Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 314, Pages 301–310
DOI: https://doi.org/10.4213/tm4202
(Mi tm4202)
 

Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials

V. N. Chubarikov

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
References:
Abstract: A mean-value theorem for multiple trigonometric (exponential) sums on the sequence of Bell polynomials is proved. It generalizes I. M. Vinogradov's and G. I. Arkhipov's theorems. As is well known, a mean-value theorem of this type is at the core of Vinogradov's method. The Bell polynomials are very closely related to the Faà di Bruno theorem on higher order derivatives of a composite function. As an application of the mean-value theorem proved in the paper, estimates for the sums $\sum _{n_1\leq P}\dots \sum _{n_r\leq P}e^{2\pi i(\alpha _1Y_1(n_1)+\dots +\alpha _rY_r(n_1,\dots ,n_r))}$ are obtained, where $\alpha _s$ are real numbers and $Y_s(n_1,\dots ,n_s)$ are the degree $s$ Bell polynomials, $1\leq s\leq r$.
Keywords: mean-value theorems of Vinogradov and Arkhipov, sequence of Bell polynomials, Faà di Bruno theorem.
Received: October 11, 2020
Revised: April 20, 2021
Accepted: June 15, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 314, Pages 290–299
DOI: https://doi.org/10.1134/S0081543821040143
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. N. Chubarikov, “Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 301–310; Proc. Steklov Inst. Math., 314 (2021), 290–299
Citation in format AMSBIB
\Bibitem{Chu21}
\by V.~N.~Chubarikov
\paper Mean-Value Theorem for Multiple Trigonometric Sums on the Sequence of Bell Polynomials
\inbook Analytic and Combinatorial Number Theory
\bookinfo Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 314
\pages 301--310
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4202}
\crossref{https://doi.org/10.4213/tm4202}
\elib{https://elibrary.ru/item.asp?id=47515134}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 314
\pages 290--299
\crossref{https://doi.org/10.1134/S0081543821040143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000705530700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117283425}
Linking options:
  • https://www.mathnet.ru/eng/tm4202
  • https://doi.org/10.4213/tm4202
  • https://www.mathnet.ru/eng/tm/v314/p301
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :31
    References:46
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024