Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 314, Pages 248–274
DOI: https://doi.org/10.4213/tm4188
(Mi tm4188)
 

This article is cited in 1 scientific paper (total in 1 paper)

Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line

Athanasios Sourmelidisa, Jörn Steudingb, Ade Irma Suriajayac

a Institute of Analysis and Number Theory, TU Graz, Steyrergasse 30, 8010 Graz, Austria
b Institute of Mathematics, Wuürzburg University, Emil-Fischer-Str. 40, 97074 Würzburg, Germany
c Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
Full-text PDF (340 kB) Citations (1)
References:
Abstract: The class of Dirichlet series associated with a periodic arithmetical function $f$ includes the Riemann zeta-function as well as Dirichlet $L$-functions to residue class characters. We study the value-distribution of these Dirichlet series $L(s;f)$ and their analytic continuation in the neighbourhood of the critical line (which is the axis of symmetry of the related Riemann-type functional equation). In particular, for a fixed complex number $a\neq 0$, we find for an even or odd periodic $f$ the number of $a$-points of the $\Delta $-factor of the functional equation, prove the existence of the mean of the values of $L(s;f)$ taken at these points, show that the ordinates of these $a$-points are uniformly distributed modulo one and apply this to show a discrete universality theorem.
Keywords: Dirichlet L-functions, Dirichlet series, periodic coefficients, critical line, uniform distribution, universality, Julia line.
Funding agency Grant number
Austrian Science Fund Y-901
Japan Society for the Promotion of Science 18K13400
The first author is supported by the Austrian Science Fund, project Y-901, and the third author is supported by JSPS KAKENHI grant no. 18K13400.
Received: July 25, 2020
Revised: February 26, 2021
Accepted: June 9, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 314, Pages 238–263
DOI: https://doi.org/10.1134/S0081543821040118
Bibliographic databases:
Document Type: Article
UDC: 511.331
MSC: 11M06, 30D35
Language: Russian
Citation: Athanasios Sourmelidis, Jörn Steuding, Ade Irma Suriajaya, “Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 248–274; Proc. Steklov Inst. Math., 314 (2021), 238–263
Citation in format AMSBIB
\Bibitem{SouSteSur21}
\by Athanasios~Sourmelidis, J\"orn~Steuding, Ade~Irma~Suriajaya
\paper Dirichlet Series with Periodic Coefficients and Their Value-Distribution near the Critical Line
\inbook Analytic and Combinatorial Number Theory
\bookinfo Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 314
\pages 248--274
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4188}
\crossref{https://doi.org/10.4213/tm4188}
\elib{https://elibrary.ru/item.asp?id=47659366}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 314
\pages 238--263
\crossref{https://doi.org/10.1134/S0081543821040118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000705530700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116749833}
Linking options:
  • https://www.mathnet.ru/eng/tm4188
  • https://doi.org/10.4213/tm4188
  • https://www.mathnet.ru/eng/tm/v314/p248
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :41
    References:53
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024