Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 314, Pages 211–247
DOI: https://doi.org/10.4213/tm4191
(Mi tm4191)
 

This article is cited in 1 scientific paper (total in 1 paper)

Modular Ternary Additive Problems with Irregular or Prime Numbers

Olivier Ramaréa, G. K. Viswanadhamb

a CNRS / Institut de Mathématiques de Marseille, Aix Marseille Université, UMR 7373, Site Sud, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, France
b Indian Institute of Science Education and Research Berhampur, Engineering School Road, Berhampur, 760010 Odisha, India
Full-text PDF (418 kB) Citations (1)
References:
Abstract: Our initial problem is to represent classes $m$ modulo $q$ by a sum of three summands, two being taken from rather small sets $\mathcal{A}$ and $\mathcal{B}$ and the third one having an odd number of prime factors (the so-called irregular numbers by S. Ramanujan) and lying in a $[q^{20r}, q^{20r}+q^{16r}]$ for some given $r\ge1$. We show that it is always possible to do so provided that $|\mathcal{A}||\mathcal{B}|\ge q(\log q)^2$. This proof leads us to study the trigonometric polynomial over irregular numbers in a short interval and to seek very sharp bound for them. We prove in particular that $\sum_{q^{20r}\le s \le q^{20r}+q^{16r}}e(sa/q)\ll q^{16r}(\log q)/\sqrt{\varphi(q)}$ uniformly in $r$, where $s$ ranges through the irregular numbers. We develop a technique initiated by Selberg and Motohashi to do so. In short, we express the characteristic function of the irregular numbers via a family of bilinear decomposition akin to Iwaniec amplification process and that uses pseudo-characters or local models. The technique applies to the Liouville function, to the Moebius function and also to the van Mangold function in which case it is slightly more difficult. It is however simple enough to warrant explicit estimates and we prove for instance that $| \sum_{X<\ell\le 2X}\Lambda(\ell)\, e(\ell a/q) |\le 1300 \sqrt{q}\,X/\varphi(q)$ for $250\le q\le X^{1/24}$ and any $a$ prime to $q$. Several other results are also proved.
Funding agency Grant number
Indo-French Centre for the Promotion of Advanced Research 5401-A
Science and Engineering Research Board SERB/ECR/2018/000850
The first author was supported by the Cefipra project 5401-A, and the second author was supported by the SERB project SERB/ECR/2018/000850.
Received: April 15, 2020
Revised: February 20, 2021
Accepted: June 17, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 314, Pages 203–237
DOI: https://doi.org/10.1134/S0081543821040106
Bibliographic databases:
Document Type: Article
UDC: 511.33
Language: Russian
Citation: Olivier Ramaré, G. K. Viswanadham, “Modular Ternary Additive Problems with Irregular or Prime Numbers”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 211–247; Proc. Steklov Inst. Math., 314 (2021), 203–237
Citation in format AMSBIB
\Bibitem{RamVis21}
\by Olivier~Ramar\'e, G.~K.~Viswanadham
\paper Modular Ternary Additive Problems with Irregular or Prime Numbers
\inbook Analytic and Combinatorial Number Theory
\bookinfo Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 314
\pages 211--247
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4191}
\crossref{https://doi.org/10.4213/tm4191}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 314
\pages 203--237
\crossref{https://doi.org/10.1134/S0081543821040106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000705530700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117036112}
Linking options:
  • https://www.mathnet.ru/eng/tm4191
  • https://doi.org/10.4213/tm4191
  • https://www.mathnet.ru/eng/tm/v314/p211
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :48
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024