Abstract:
We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.
The work of A.A. Kilin (Sections 2 and 3) is supported by the Russian Foundation for Basic Research, project nos. 15-38-20879-mol_a_ved and 15-08-09261-a. The work of Yu.L. Karavaev (Sections 4 and 5) is supported by the Russian Science Foundation under grant 14-19-01303.
Citation:
Yu. L. Karavaev, A. A. Kilin, “Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: theory and experiments”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 174–183; Proc. Steklov Inst. Math., 295 (2016), 158–167
\Bibitem{KarKil16}
\by Yu.~L.~Karavaev, A.~A.~Kilin
\paper Nonholonomic dynamics and control of a~spherical robot with an internal omniwheel platform: theory and experiments
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 174--183
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3755}
\crossref{https://doi.org/10.1134/S0371968516040099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628519}
\elib{https://elibrary.ru/item.asp?id=27643607}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 158--167
\crossref{https://doi.org/10.1134/S0081543816080095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010767432}
Linking options:
https://www.mathnet.ru/eng/tm3755
https://doi.org/10.1134/S0371968516040099
https://www.mathnet.ru/eng/tm/v295/p174
This publication is cited in the following 46 articles:
Marek Bujňák, Rastislav Pirník, Dušan Nemec, Júlia Kafková, Aleš Janota, Pavol Kuchár, “SpheriDrive: A spherical robot with an innovative 3-wheeled platform and omnidirectional wheels”, Results in Engineering, 25 (2025), 104351
Aminata Diouf, Bruno Belzile, Maarouf Saad, David St-Onge, “Spherical rolling robots—Design, modeling, and control: A systematic literature review”, Robotics and Autonomous Systems, 175 (2024), 104657
A. V. Klekovkin, Yu. L. Karavaev, A. V. Nazarov, “Stabilization of a Spherical Robot with an Internal Pendulum During Motion on an Oscillating Base”, Rus. J. Nonlin. Dyn., 20:5 (2024), 845–858
Suwan Bu, Liang Yan, Xiaoshan Gao, Gang Wang, Peiran Zhao, I-Ming Chen, “Design and Motion Control of Spherical Robot With Built-In Four-Wheel Omnidirectional Mobile Platform”, IEEE Trans. Instrum. Meas., 72 (2023), 1
Yansheng Li, Meimei Yang, Bo Wei, Yi Zhang, “Energy-saving control of rolling speed for spherical robot based on regenerative damping”, Nonlinear Dyn, 111:8 (2023), 7235
Ivanova T.B., Karavaev Yu.L., Kilin A.A., “Control of a Pendulum-Actuated Spherical Robot on a Horizontal Plane With Rolling Resistance”, Arch. Appl. Mech., 92:1 (2022), 137–150
Kilin A.A., Karavaev Yu.L., Ivanova T.B., “Rolling Resistance Model and Control of Spherical Robot”, Robotics For Sustainable Future, Clawar 2021, Lecture Notes in Networks and Systems, 324, eds. Chugo D., Tokhi M., Silva M., Nakamura T., Goher K., Springer International Publishing Ag, 2022, 396–407
Yu. L. Karavaev, “Spherical Robots:
An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750
Jasper Zevering, Dorit Borrmann, Anton Bredenbeck, Andreas Nüchter, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, 5656
Darina Hroncova, Lubica Mikova, Erik Prada, Robert Rakay, Peter Jan Sincak, Tomas Merva, 2022 20th International Conference on Mechatronics - Mechatronika (ME), 2022, 1
Yu. Fang, Yu. Zhang, Y. Shang, T. Huang, M. Yan, “Center-point steering analysis of tracked omni-vehicles based on skid conditions”, Mech. Sci., 12:1 (2021), 511–527
Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
Andrei Ardentov, Kirill Yefremov, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236
Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706
Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752
V. Putkaradze, S. Rogers, “On the optimal control of a rolling ball robot actuated by internal point masses”, J. Dyn. Syst. Meas. Control-Trans. ASME, 142:5 (2020)
T. Zhou, Yu.-g. Xu, B. Wu, “Smooth fractional order sliding mode controller for spherical robots with input saturation”, Appl. Sci.-Basel, 10:6 (2020)
I. Virgala, L. Mikova, T. Kelemenova, M. Kelemen, E. Prada, D. Hroncova, M. Varga, “Reconfigurable wheel-legged robot”, MM Sci. J., 2020 (2020), 3960–3965
A. A. Kilin, E. N. Pivovarova, “Neintegriruemost zadachi o kachenii sfericheskogo volchka po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 628–644