Abstract:
The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
Citation:
A. T. Il'ichev, A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 163–173; Proc. Steklov Inst. Math., 295 (2016), 148–157
\Bibitem{IliChu16}
\by A.~T.~Il'ichev, A.~P.~Chugainova
\paper Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 163--173
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3754}
\crossref{https://doi.org/10.1134/S0371968516040087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628518}
\elib{https://elibrary.ru/item.asp?id=27643606}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 148--157
\crossref{https://doi.org/10.1134/S0081543816080083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400008}
\elib{https://elibrary.ru/item.asp?id=27066102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010815619}
Linking options:
https://www.mathnet.ru/eng/tm3754
https://doi.org/10.1134/S0371968516040087
https://www.mathnet.ru/eng/tm/v295/p163
This publication is cited in the following 9 articles:
V. A. Shargatov, A. P. Chugainova, A. M. Tomasheva, “Structures of Classical and Special Discontinuities for the Generalized Korteweg–de Vries–Burgers Equation in the Case of a Flux Function with Four Inflection Points”, Proc. Steklov Inst. Math., 322 (2023), 257–272
A. T. Ilichev, “Ustoichivost granichnykh sostoyanii v beskonechnykh prostranstvennykh oblastyakh”, Lekts. kursy NOTs, 32, MIAN, M., 2022, 3–58
A. P. Chugainova, G. V. Kolomoitsev, V. A. Shargatov, “On the Instability of Monotone Traveling-Wave Solutions for a Generalized Korteweg-–de Vries-–Burgers Equation”, Russ. J. Math. Phys., 29 (2022), 342–357
V. A. Shargatov, A. P. Chugainova, “Stability analysis of traveling wave solutions of a generalized Korteweg-de Vries-Burgers equation with variable dissipation parameter”, J. Comput. Appl. Math., 397 (2021), 113654
V. A. Shargatov, S. V. Gorkunov, A. T. Il'chev, “Dynamics of front-like water evaporation phase transition interfaces”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 223–236
A.P. Chugainova, V.A. Shargatov, “Analytical description of the structure of special discontinuities described by a generalized KdV–Burgers equation”, Communications in Nonlinear Science and Numerical Simulation, 66 (2019), 129
A. G. Kulikovskii, A. P. Chugainova, “Shock waves in anisotropic cylinders”, Proc. Steklov Inst. Math., 300 (2018), 100–113
V. V. Zharinov, “Hamiltonian operators in differential algebras”, Theoret. and Math. Phys., 193:3 (2017), 1725–1736
A. P. Chugainova, A. T. Il'ichev, A. G. Kulikovskii, V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: selection conditions for a unique solution”, IMA J. Appl. Math., 82:3 (2017), 496–525