Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 295, Pages 163–173
DOI: https://doi.org/10.1134/S0371968516040087
(Mi tm3754)
 

This article is cited in 9 scientific papers (total in 9 papers)

Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential

A. T. Il'ichev, A. P. Chugainova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (203 kB) Citations (9)
References:
Abstract: The analysis of stability of heteroclinic solutions to the Korteweg–de Vries–Burgers equation is generalized to the case of an arbitrary potential that gives rise to heteroclinic states. An example of a specific nonconvex potential is given for which there exists a wide set of heteroclinic solutions of different types. Stability of the corresponding solutions in the context of uniqueness of a solution to the problem of decay of an arbitrary discontinuity is discussed.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: June 10, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 295, Pages 148–157
DOI: https://doi.org/10.1134/S0081543816080083
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. T. Il'ichev, A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 163–173; Proc. Steklov Inst. Math., 295 (2016), 148–157
Citation in format AMSBIB
\Bibitem{IliChu16}
\by A.~T.~Il'ichev, A.~P.~Chugainova
\paper Spectral stability theory of heteroclinic solutions to the Korteweg--de Vries--Burgers equation with an arbitrary potential
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 163--173
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3754}
\crossref{https://doi.org/10.1134/S0371968516040087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628518}
\elib{https://elibrary.ru/item.asp?id=27643606}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 148--157
\crossref{https://doi.org/10.1134/S0081543816080083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400008}
\elib{https://elibrary.ru/item.asp?id=27066102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010815619}
Linking options:
  • https://www.mathnet.ru/eng/tm3754
  • https://doi.org/10.1134/S0371968516040087
  • https://www.mathnet.ru/eng/tm/v295/p163
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :55
    References:49
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024