Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 295, Pages 184–194
DOI: https://doi.org/10.1134/S0371968516040105
(Mi tm3756)
 

This article is cited in 6 scientific papers (total in 6 papers)

A local perturbation method for the approximate calculation of the acoustic wave diffraction with impedance interface conditions

D. Yu. Knyaz'kov, A. V. Romanova, A. S. Shamaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (213 kB) Citations (6)
References:
Abstract: The problem of incidence of an acoustic wave on the interface between media with impedance interface conditions is considered. An approximate method is proposed for calculating the result of diffraction under such conditions. The method is implemented as a computer program, and the result is compared with the analytical solution for the impedance conditions and with the calculations by a program for the contact boundary conditions. Good accuracy of the method and high computation speed are demonstrated, which allow one to apply the proposed approximate method to solving both direct and inverse problems of acoustics.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: June 22, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 295, Pages 168–178
DOI: https://doi.org/10.1134/S0081543816080101
Bibliographic databases:
Document Type: Article
UDC: 519.632.4+534.26
Language: Russian
Citation: D. Yu. Knyaz'kov, A. V. Romanova, A. S. Shamaev, “A local perturbation method for the approximate calculation of the acoustic wave diffraction with impedance interface conditions”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 184–194; Proc. Steklov Inst. Math., 295 (2016), 168–178
Citation in format AMSBIB
\Bibitem{KnyRomSha16}
\by D.~Yu.~Knyaz'kov, A.~V.~Romanova, A.~S.~Shamaev
\paper A local perturbation method for the approximate calculation of the acoustic wave diffraction with impedance interface conditions
\inbook Modern problems of mechanics
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 295
\pages 184--194
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3756}
\crossref{https://doi.org/10.1134/S0371968516040105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628520}
\elib{https://elibrary.ru/item.asp?id=27643608}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 295
\pages 168--178
\crossref{https://doi.org/10.1134/S0081543816080101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000395572400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010791708}
Linking options:
  • https://www.mathnet.ru/eng/tm3756
  • https://doi.org/10.1134/S0371968516040105
  • https://www.mathnet.ru/eng/tm/v295/p184
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :57
    References:36
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024