|
This article is cited in 1 scientific paper (total in 1 paper)
A KAM theorem for space-multidimensional Hamiltonian PDEs
L. H. Eliassona, B. Grébertb, S. B. Kuksina a Université Paris Diderot, Sorbonne Paris Cité, Institut de Mathéematiques de Jussieu–Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Université Paris 06, F-75013, Paris, France
b Laboratoire de Mathématiques Jean Leray, Université de Nantes, UMR CNRS 6629, 44322 Nantes Cedex 3, France
Abstract:
We present an abstract KAM theorem adapted to space-multidimensional Hamiltonian PDEs with smoothing nonlinearities. The main novelties of this theorem are the following: (i) the integrable part of the Hamiltonian may contain a hyperbolic part and, as a consequence, the constructed invariant tori may be unstable; (ii) it applies to singular perturbation problems. In this paper we state the KAM theorem and comment on it, give the main ingredients of the proof, and present three applications of the theorem.
Received: June 14, 2016
Citation:
L. H. Eliasson, B. Grébert, S. B. Kuksin, “A KAM theorem for space-multidimensional Hamiltonian PDEs”, Modern problems of mechanics, Collected papers, Trudy Mat. Inst. Steklova, 295, MAIK Nauka/Interperiodica, Moscow, 2016, 142–162; Proc. Steklov Inst. Math., 295 (2016), 129–147
Linking options:
https://www.mathnet.ru/eng/tm3751https://doi.org/10.1134/S0371968516040075 https://www.mathnet.ru/eng/tm/v295/p142
|
Statistics & downloads: |
Abstract page: | 265 | Full-text PDF : | 69 | References: | 39 | First page: | 11 |
|