Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 38–48
DOI: https://doi.org/10.1134/S0371968515010033
(Mi tm3608)
 

This article is cited in 3 scientific papers (total in 3 papers)

Three-dimensional manifolds with poor spines

A. Yu. Vesninab, V. G. Turaevac, E. A. Fominykhad

a Chelyabinsk State University, Chelyabinsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
c Indiana University Bloomington, Bloomington, IN, USA
d Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Full-text PDF (209 kB) Citations (3)
References:
Abstract: A special spine of a $3$-manifold is said to be poor if it does not contain proper simple subpolyhedra. Using the Turaev–Viro invariants, we establish that every compact $3$-manifold $M$ with connected nonempty boundary has a finite number of poor special spines. Moreover, all poor special spines of the manifold $M$ have the same number of true vertices. We prove that the complexity of a compact hyperbolic $3$-manifold with totally geodesic boundary that has a poor special spine with two $2$-components and $n$ true vertices is equal to $n$. Such manifolds are constructed for infinitely many values of $n$.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00513, 14-01-00441
Ministry of Education and Science of the Russian Federation НШ-1015.2014.1
Received in November 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 29–38
DOI: https://doi.org/10.1134/S0081543815010034
Bibliographic databases:
Document Type: Article
UDC: 515.162.3
Language: Russian
Citation: A. Yu. Vesnin, V. G. Turaev, E. A. Fominykh, “Three-dimensional manifolds with poor spines”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 38–48; Proc. Steklov Inst. Math., 288 (2015), 29–38
Citation in format AMSBIB
\Bibitem{VesTurFom15}
\by A.~Yu.~Vesnin, V.~G.~Turaev, E.~A.~Fominykh
\paper Three-dimensional manifolds with poor spines
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 38--48
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3608}
\crossref{https://doi.org/10.1134/S0371968515010033}
\elib{https://elibrary.ru/item.asp?id=23302158}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 29--38
\crossref{https://doi.org/10.1134/S0081543815010034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928739505}
Linking options:
  • https://www.mathnet.ru/eng/tm3608
  • https://doi.org/10.1134/S0371968515010033
  • https://www.mathnet.ru/eng/tm/v288/p38
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :86
    References:58
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024