Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 49–66
DOI: https://doi.org/10.1134/S0371968515010045
(Mi tm3594)
 

This article is cited in 1 scientific paper (total in 1 paper)

Geometry of lifts of tilings of Euclidean spaces

A. A. Gavrilyukab

a Scientific Research Institute for System Studies of RAS, Moscow, Russia
b Faculty of Computer Science, National Research University "Higher School of Economics", Moscow, Russia
Full-text PDF (285 kB) Citations (1)
References:
Abstract: The method of canonical scalings is substantiated for lifts of tilings of Euclidean space. A new combinatorial-geometric approach to the construction of a generatrix of a tiling is proposed. The construction is based on a simple and geometrically transparent operation of lifting a face to an earlier lifted neighbor. The approach is applied to the fundamental theorem of polytope theory related to the classical problem of validity of Voronoi's conjecture for parallelotopes. So far Voronoi's conjecture has been proved only for some special families of parallelotopes, and the theorem states that Voronoi's conjecture holds for a given parallelotope $P$ if and only if there exists a canonical scaling for the corresponding tiling $\mathcal T_P$. A new, significantly shortened (compared with the available ones), geometric proof of this fundamental theorem is given.
Received in November 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 39–55
DOI: https://doi.org/10.1134/S0081543815010046
Bibliographic databases:
Document Type: Article
UDC: 514.174+514.87
Language: Russian
Citation: A. A. Gavrilyuk, “Geometry of lifts of tilings of Euclidean spaces”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 49–66; Proc. Steklov Inst. Math., 288 (2015), 39–55
Citation in format AMSBIB
\Bibitem{Gav15}
\by A.~A.~Gavrilyuk
\paper Geometry of lifts of tilings of Euclidean spaces
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 49--66
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3594}
\crossref{https://doi.org/10.1134/S0371968515010045}
\elib{https://elibrary.ru/item.asp?id=23302162}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 39--55
\crossref{https://doi.org/10.1134/S0081543815010046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928736398}
Linking options:
  • https://www.mathnet.ru/eng/tm3594
  • https://doi.org/10.1134/S0371968515010045
  • https://www.mathnet.ru/eng/tm/v288/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:283
    Full-text PDF :67
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024