Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2015, Volume 288, Pages 16–37
DOI: https://doi.org/10.1134/S0371968515010021
(Mi tm3610)
 

Toric origami structures on quasitoric manifolds

A. A. Aizenberga, M. Masudaa, Seonjeong Parkb, Haozhi Zenga

a Department of Mathematics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
b Division of Mathematical Models, National Institute for Mathematical Sciences, 463-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
References:
Abstract: We construct quasitoric manifolds of dimension $6$ and higher which are not equivariantly homeomorphic to any toric origami manifold. All necessary topological definitions and combinatorial constructions are given, and the statement is reformulated in discrete geometrical terms. The problem reduces to the existence of planar triangulations with certain coloring and metric properties.
Funding agency Grant number
Japan Society for the Promotion of Science
Received in September 2014
English version:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 10–28
DOI: https://doi.org/10.1134/S0081543815010022
Bibliographic databases:
Document Type: Article
UDC: 515.164.8
Language: Russian
Citation: A. A. Aizenberg, M. Masuda, Seonjeong Park, Haozhi Zeng, “Toric origami structures on quasitoric manifolds”, Geometry, topology, and applications, Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 288, MAIK Nauka/Interperiodica, Moscow, 2015, 16–37; Proc. Steklov Inst. Math., 288 (2015), 10–28
Citation in format AMSBIB
\Bibitem{AyzMasPar15}
\by A.~A.~Aizenberg, M.~Masuda, Seonjeong~Park, Haozhi~Zeng
\paper Toric origami structures on quasitoric manifolds
\inbook Geometry, topology, and applications
\bookinfo Collected papers. Dedicated to Professor Nikolai Petrovich Dolbilin on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2015
\vol 288
\pages 16--37
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3610}
\crossref{https://doi.org/10.1134/S0371968515010021}
\elib{https://elibrary.ru/item.asp?id=23302155}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 10--28
\crossref{https://doi.org/10.1134/S0081543815010022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928736039}
Linking options:
  • https://www.mathnet.ru/eng/tm3610
  • https://doi.org/10.1134/S0371968515010021
  • https://www.mathnet.ru/eng/tm/v288/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :84
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024