Abstract:
Using a modification of the nonlinear capacity method, we obtain necessary conditions for the solvability of some nonlinear partial differential equations and inequalities containing the polyharmonic operator and terms that depend on the norm of the gradient of the solution, both in the entire space and in bounded domains; in the latter case the coefficients of the inequality are allowed to have singularities.
Citation:
E. I. Galakhov, “On some partial differential inequalities with gradient terms”, Function theory and equations of mathematical physics, Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth, Trudy Mat. Inst. Steklova, 283, MAIK Nauka/Interperiodica, Moscow, 2013, 40–48; Proc. Steklov Inst. Math., 283 (2013), 35–43
\Bibitem{Gal13}
\by E.~I.~Galakhov
\paper On some partial differential inequalities with gradient terms
\inbook Function theory and equations of mathematical physics
\bookinfo Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 283
\pages 40--48
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3503}
\crossref{https://doi.org/10.1134/S0371968513040043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479947}
\elib{https://elibrary.ru/item.asp?id=20783228}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 35--43
\crossref{https://doi.org/10.1134/S008154381308004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000003}
Linking options:
https://www.mathnet.ru/eng/tm3503
https://doi.org/10.1134/S0371968513040043
https://www.mathnet.ru/eng/tm/v283/p40
This publication is cited in the following 2 articles:
V. E. Admasu, E. I. Galakhov, O. A. Salieva, “Otsutstvie netrivialnykh slabykh reshenii nekotorykh nelineinykh neravenstv s gradientnoi nelineinostyu”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 1–13
A. A. Kon'kov, “Blow-up of solutions for a class of nondivergence elliptic inequalities”, Comput. Math. Math. Phys., 57:3 (2017), 453–463