Abstract:
The problem of existence of variational principles for wide classes of generally nonlinear differential-difference equations with nonpotential operators is investigated.
Citation:
V. M. Filippov, V. M. Savchin, S. A. Budochkina, “On the existence of variational principles for differential–difference evolution equations”, Function theory and equations of mathematical physics, Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth, Trudy Mat. Inst. Steklova, 283, MAIK Nauka/Interperiodica, Moscow, 2013, 25–39; Proc. Steklov Inst. Math., 283 (2013), 20–34
\Bibitem{FilSavBud13}
\by V.~M.~Filippov, V.~M.~Savchin, S.~A.~Budochkina
\paper On the existence of variational principles for differential--difference evolution equations
\inbook Function theory and equations of mathematical physics
\bookinfo Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 283
\pages 25--39
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3504}
\crossref{https://doi.org/10.1134/S0371968513040031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479946}
\elib{https://elibrary.ru/item.asp?id=20783227}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 20--34
\crossref{https://doi.org/10.1134/S0081543813080038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000002}
Linking options:
https://www.mathnet.ru/eng/tm3504
https://doi.org/10.1134/S0371968513040031
https://www.mathnet.ru/eng/tm/v283/p25
This publication is cited in the following 5 articles:
V. Filippov, V. Savchin, S. Budochkina, “Bi-Variationality, Symmetries and Approximate Solutions”, J Math Sci, 278:2 (2024), 373
Ufa Math. J., 15:3 (2023), 118–128
S. A. Budochkina, “On connection between variational symmetries and algebraic structures”, Ufa Math. J., 13:1 (2021), 46–55
Svetlana A. Budochkina, Ekaterina S. Dekhanova, “On the potentiality of a class of operators relative to local bilinear forms”, Ural Math. J., 7:1 (2021), 26–37
V. M. Filippov, V. M. Savchin, S. A. Budochkina, “Bivariatsionnost, simmetrii i priblizhennye resheniya”, Posvyaschaetsya 70-letiyu prezidenta RUDN V.M. Filippova, SMFN, 67, no. 3, Rossiiskii universitet druzhby narodov, M., 2021, 596–608