Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2013, Volume 283, Pages 49–79
DOI: https://doi.org/10.1134/S0371968513040055
(Mi tm3500)
 

This article is cited in 4 scientific papers (total in 4 papers)

The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations

V. A. Galaktionov

Department of Mathematical Sciences, University of Bath, Bath, UK
Full-text PDF (856 kB) Citations (4)
References:
Abstract: The seminal paper by Kolmogorov, Petrovskii, and Piskunov (KPP) of 1937 on the travelling wave propagation in the reaction–diffusion equation $u_t=u_{xx}+u(1-u)$ in $\mathbb R\times\mathbb R_+$ with $u_0(x)=H(-x)\equiv1$ for $x<0$ and $0$ for $x\ge0$ (here $H(\cdot)$ is the Heaviside function) opened a new era in the general theory of nonlinear PDEs and various applications. This paper became an encyclopedia of deep mathematical techniques and tools for nonlinear parabolic equations, which, in the last seventy years, were further developed in hundreds of papers and in dozens of monographs. The KPP paper established the fundamental fact that, in the above equation, there occurs a travelling wave $f(x-\lambda _0t)$, with the minimal speed $\lambda_0=2$, and, in the moving frame with the front shift $x_f(t)$ ($u(x_f(t),t)\equiv1/2$), there is uniform convergence $u(x_f(t)+y,t)\to f(y)$ as $t\to+\infty$, where $x_f(t)=2t(1+o(1))$. In 1983, by a probabilistic approach, Bramson proved that there exists an unbounded $\log t$-shift of the wave front in the indicated PDE problem and $x_f(t)=2t-(3/2)\log t(1+o(1))$ as $t\to+\infty$. Our goal is to reveal some aspects of KPP-type problems for higher-order semilinear parabolic PDEs, including the bi-harmonic equation and the tri-harmonic one, $u_t=-u_{xxxx}+u(1-u)$ and $u_t=u_{xxxxxx}+u(1-u)$. Two main questions to study are (i) existence of travelling waves via any analytical/numerical methods and (ii) a formal derivation of the $\log t$-shifting of moving fronts.
Received in November 2012
English version:
Proceedings of the Steklov Institute of Mathematics, 2013, Volume 283, Pages 44–74
DOI: https://doi.org/10.1134/S0081543813080051
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: English
Citation: V. A. Galaktionov, “The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations”, Function theory and equations of mathematical physics, Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth, Trudy Mat. Inst. Steklova, 283, MAIK Nauka/Interperiodica, Moscow, 2013, 49–79; Proc. Steklov Inst. Math., 283 (2013), 44–74
Citation in format AMSBIB
\Bibitem{Gal13}
\by V.~A.~Galaktionov
\paper The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations
\inbook Function theory and equations of mathematical physics
\bookinfo Collected papers. In commemoration of the 90th anniversary of Lev Dmitrievich Kudryavtsev's birth
\serial Trudy Mat. Inst. Steklova
\yr 2013
\vol 283
\pages 49--79
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3500}
\crossref{https://doi.org/10.1134/S0371968513040055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479948}
\elib{https://elibrary.ru/item.asp?id=20783229}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 44--74
\crossref{https://doi.org/10.1134/S0081543813080051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000004}
\elib{https://elibrary.ru/item.asp?id=20440023}
Linking options:
  • https://www.mathnet.ru/eng/tm3500
  • https://doi.org/10.1134/S0371968513040055
  • https://www.mathnet.ru/eng/tm/v283/p49
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025