Abstract:
We present a simplified proof of Japaridze's arithmetical completeness theorem for the well-known polymodal provability logic GLP. The simplification is achieved by employing a fragment J of GLP that enjoys a more convenient Kripke-style semantics than the logic considered in the papers by Ignatiev and Boolos. In particular, this allows us to simplify the arithmetical fixed point construction and to bring it closer to the standard construction due to Solovay.
Citation:
L. D. Beklemishev, “A simplified proof of arithmetical completeness theorem for provability logic GLP”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 32–40; Proc. Steklov Inst. Math., 274 (2011), 25–33
\Bibitem{Bek11}
\by L.~D.~Beklemishev
\paper A simplified proof of arithmetical completeness theorem for provability logic $\mathbf{GLP}$
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 32--40
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3313}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962934}
\elib{https://elibrary.ru/item.asp?id=16766470}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 25--33
\crossref{https://doi.org/10.1134/S0081543811060046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200003}
\elib{https://elibrary.ru/item.asp?id=23964488}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885298538}
Linking options:
https://www.mathnet.ru/eng/tm3313
https://www.mathnet.ru/eng/tm/v274/p32
This publication is cited in the following 11 articles:
Izv. Math., 89:1 (2025), 1–14
Bagaria J., “Derived Topologies on Ordinals and Stationary Reflection”, Trans. Am. Math. Soc., 371:3 (2019), 1981–2002
Fernandez-Duque D., Joosten J.J., “The Omega-Rule Interpretation of Transfinite Provability Logic”, Ann. Pure Appl. Log., 169:4 (2018), 333–371
Berger G., Beklemishev L.D., Tompits H., “A Many-Sorted Variant of Japaridze'S Polymodal Provability Logic”, Log. J. IGPL, 26:5 (2018), 505–538
Beklemishev L.D., “On the Reduction Property For Glp-Algebras”, Dokl. Math., 95:1 (2017), 50–54
F. N. Pakhomov, “Linear $\mathrm{GLP}$-algebras and their elementary theories”, Izv. Math., 80:6 (2016), 1159–1199
Shamkanov D., “Nested Sequents For Provability Logic Glp”, Log. J. IGPL, 23:5 (2015), 789–815
Beklemishev L., “Positive Provability Logic for Uniform Reflection Principles”, Ann. Pure Appl. Log., 165:1, SI (2014), 82–105
Beklemishev L.D., Fernandez-Duque D., Joosten J.J., “On Provability Logics with Linearly Ordered Modalities”, Stud. Log., 102:3 (2014), 541–566
Lev Beklemishev, David Gabelaia, Outstanding Contributions to Logic, 4, Leo Esakia on Duality in Modal and Intuitionistic Logics, 2014, 257
Daniyar S. Shamkanov, “Interpolation properties for provability logics $\mathbf{GL}$ and $\mathbf{GLP}$”, Proc. Steklov Inst. Math., 274 (2011), 303–316