Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 274, Pages 15–31 (Mi tm3325)  

This article is cited in 11 scientific papers (total in 11 papers)

On normal subgroups in the periodic products of S. I. Adian

V. S. Atabekyan

Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
References:
Abstract: A subgroup H of a given group G is called a hereditarily factorizable subgroup (HF subgroup) if each congruence on H can be extended to some congruence on the entire group G. An arbitrary group G1 is an HF subgroup of the direct product G1×G2, as well as of the free product G1G2 of groups G1 and G2. In this paper a necessary and sufficient condition is obtained for a factor Gi of Adian's n-periodic product iInGi of an arbitrary family of groups {Gi}iI to be an HF subgroup. We also prove that for each odd n1003 any noncyclic subgroup of the free Burnside group B(m,n) contains an HF subgroup isomorphic to the group B(,n) of infinite rank. This strengthens the recent results of A. Yu. Ol'shanskii and M. Sapir, D. Sonkin, and S. Ivanov on HF subgroups of free Burnside groups. This result implies, in particular, that each (noncyclic) subgroup of the group B(m,n) is SQ-universal in the class of all groups of period n. Moreover, it turns out that any countable group of period n is embedded in some 2-generated group of period n, which strengthens the previously obtained result of V. Obraztsov. At the end of the paper we prove that the group B(m,n) is distinguished as a direct factor in any n-periodic group in which it is contained as a normal subgroup.
Received in August 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 274, Pages 9–24
DOI: https://doi.org/10.1134/S0081543811060034
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 15–31; Proc. Steklov Inst. Math., 274 (2011), 9–24
Citation in format AMSBIB
\Bibitem{Ata11}
\by V.~S.~Atabekyan
\paper On normal subgroups in the periodic products of S.\,I.~Adian
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 15--31
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962933}
\elib{https://elibrary.ru/item.asp?id=16766468}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 9--24
\crossref{https://doi.org/10.1134/S0081543811060034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200002}
\elib{https://elibrary.ru/item.asp?id=24529394}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892530654}
Linking options:
  • https://www.mathnet.ru/eng/tm3325
  • https://www.mathnet.ru/eng/tm/v274/p15
  • This publication is cited in the following 11 articles:
    1. Adian S.I. Atabekyan V.S., “N-Torsion Groups”, J. Contemp. Math. Anal.-Armen. Aca., 54:6 (2019), 319–327  crossref  mathscinet  isi
    2. Atabekyan V.S. Gevorgyan A.L. Stepanyan Sh.A., “The Unique Trace Property of N-Periodic Product of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:4 (2017), 161–165  crossref  mathscinet  zmath  isi
    3. Adian S.I., Atabekyan V.S., “Periodic Products of Groups”, J. Contemp. Math. Anal.-Armen. Aca., 52:3 (2017), 111–117  crossref  mathscinet  zmath  isi
    4. V. S. Atabekyan, “Automorphism groups and endomorphism semigroups of groups B(m,n)”, Algebra and Logic, 54:1 (2015), 58–62  mathnet  crossref  crossref  mathscinet  isi
    5. S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of n-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. S. I. Adian, V. S. Atabekyan, “The Hopfian Property of n-Periodic Products of Groups”, Math. Notes, 95:4 (2014), 443–449  mathnet  crossref  crossref  mathscinet  isi  elib
    7. V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Sb. Math., 204:2 (2013), 182–189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Atabekyan V.S., “The Groups of Automorphisms Are Complete for Free Burnside Groups of Odd Exponents N >= 1003”, Int. J. Algebr. Comput., 23:6 (2013), 1485–1496  crossref  mathscinet  zmath  isi  elib  scopus
    9. Zusmanovich P., “On the Utility of Robinson-Amitsur Ultrafilters”, J. Algebra, 388 (2013), 268–286  crossref  mathscinet  zmath  isi  elib
    10. V. S. Atabekyan, “The automorphism tower problem for free periodic groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2013, no. 2, 3–7  mathnet
    11. A. L. Gevorgyan, “On automorphisms of periodic products of groups”, Uch. zapiski EGU, ser. Fizika i Matematika, 2012, no. 2, 3–9  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :71
    References:117
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025