Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2011, Volume 274, Pages 41–102 (Mi tm3322)  

This article is cited in 25 scientific papers (total in 25 papers)

Algorithmic tests and randomness with respect to a class of measures

Laurent Bienvenua, Peter Gácsb, Mathieu Hoyrupc, Cristobal Rojasd, Alexander Shenef

a Laboratoire d'Informatique Algorithmique: Fondements et Applications (LIAFA), CNRS UMR 7089 & Université Paris Diderot, Paris Cedex, France
b Department of Computer Science, Boston University, Boston, MA, USA
c Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Vandœuvre-lés-Nancy, France
d Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
e Laboratoire d'Informatique Fondamentale de Marseille (LIF), Université Aix–Marseille, CNRS UMR 6166, Marseille Cedex, France
f Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
References:
Abstract: This paper offers some new results on randomness with respect to classes of measures, along with a didactic exposition of their context based on results that appeared elsewhere. We start with the reformulation of the Martin-Löf definition of randomness (with respect to computable measures) in terms of randomness deficiency functions. A formula that expresses the randomness deficiency in terms of prefix complexity is given (in two forms). Some approaches that go in another direction (from deficiency to complexity) are considered. The notion of Bernoulli randomness (independent coin tosses for an asymmetric coin with some probability $p$ of head) is defined. It is shown that a sequence is Bernoulli if it is random with respect to some Bernoulli measure $B_p$. A notion of “uniform test” for Bernoulli sequences is introduced which allows a quantitative strengthening of this result. Uniform tests are then generalized to arbitrary measures. Bernoulli measures $B_p$ have the important property that $p$ can be recovered from each random sequence of $B_p$. The paper studies some important consequences of this orthogonality property (as well as most other questions mentioned above) also in the more general setting of constructive metric spaces.
Received in March 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2011, Volume 274, Pages 34–89
DOI: https://doi.org/10.1134/S0081543811060058
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: Laurent Bienvenu, Peter Gács, Mathieu Hoyrup, Cristobal Rojas, Alexander Shen, “Algorithmic tests and randomness with respect to a class of measures”, Algorithmic aspects of algebra and logic, Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 274, MAIK Nauka/Interperiodica, Moscow, 2011, 41–102; Proc. Steklov Inst. Math., 274 (2011), 34–89
Citation in format AMSBIB
\Bibitem{BieGacHoy11}
\by Laurent~Bienvenu, Peter~G\'acs, Mathieu~Hoyrup, Cristobal~Rojas, Alexander~Shen
\paper Algorithmic tests and randomness with respect to a~class of measures
\inbook Algorithmic aspects of algebra and logic
\bookinfo Collected papers. Dedicated to Academician Sergei Ivanovich Adian on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2011
\vol 274
\pages 41--102
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962935}
\elib{https://elibrary.ru/item.asp?id=16766472}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2011
\vol 274
\pages 34--89
\crossref{https://doi.org/10.1134/S0081543811060058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000295983200004}
\elib{https://elibrary.ru/item.asp?id=23965230}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912053480}
Linking options:
  • https://www.mathnet.ru/eng/tm3322
  • https://www.mathnet.ru/eng/tm/v274/p41
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:863
    Full-text PDF :134
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024