Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 33–48 (Mi tm3013)  

This article is cited in 6 scientific papers (total in 6 papers)

On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity

S. Antontseva, S. Shmarevb

a Centro de Matemática e Aplicações Fundamentais, Universidade de Lisboa, Portugal
b Departamento de Matemáticas, Universidad de Oviedo, Spain
Full-text PDF (64 kB) Citations (6)
References:
Abstract: The aim of this paper is to establish sufficient conditions of the finite time blow-up in solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations with variable nonlinearity $u_t=\sum_{i=1}^nD_i\bigl(a_i(x,t)|D_iu|^{p_i(x)-2}D_iu\bigr)+\sum_{i=1}^Kb_i(x,t)|u|^{\sigma_i(x,t)-2}u$. Two different cases are studied. In the first case $a_i\equiv a_i(x)$, $p_i\equiv2$, $\sigma_i\equiv\sigma_i(x,t)$, and $b_i(x,t)\geq0$. We show that in this case every solution corresponding to a “large” initial function blows up in finite time if there exists at least one $j$ for which $\min\sigma_j(x,t)>2$ and either $b_j>0$, or $b_j(x,t)\geq0$ and $\int_\Omega b_j^{-\rho(t)}(x,t)\,dx<\infty$ with some $\rho(t)>0$ depending on $\sigma_j$. In the case of the quasilinear equation with the exponents $p_i$ and $\sigma_i$ depending only on $x$, we show that the solutions may blow up if $\min\sigma_i\geq\max p_i$, $b_i\geq0$, and there exists at least one $j$ for which $\min\sigma_j>\max p_j$ and $b_j>0$. We extend these results to a semilinear equation with nonlocal forcing terms and quasilinear equations which combine the absorption ($b_i\leq0$) and reaction terms.
Received in February 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 27–42
DOI: https://doi.org/10.1134/S008154381003003X
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: English
Citation: S. Antontsev, S. Shmarev, “On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 33–48; Proc. Steklov Inst. Math., 270 (2010), 27–42
Citation in format AMSBIB
\Bibitem{AntShm10}
\by S.~Antontsev, S.~Shmarev
\paper On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 33--48
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768935}
\zmath{https://zbmath.org/?q=an:1221.35073}
\elib{https://elibrary.ru/item.asp?id=15249748}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 27--42
\crossref{https://doi.org/10.1134/S008154381003003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700003}
\elib{https://elibrary.ru/item.asp?id=17147304}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957345437}
Linking options:
  • https://www.mathnet.ru/eng/tm3013
  • https://www.mathnet.ru/eng/tm/v270/p33
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:732
    Full-text PDF :75
    References:92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024