Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 270, Pages 49–61 (Mi tm3008)  

This article is cited in 24 scientific papers (total in 24 papers)

Existence of planar curves minimizing length and curvature

Ugo Boscainab, Grégoire Charlotc, Francesco Rossib

a CNRS CMAP, Ècole Polytechnique, Palaiseau Cedex, France
b SISSA, Trieste, Italy
c Institut Fourier, UMR5582, St. Martin d'Hères cedex, France
References:
Abstract: We consider the problem of reconstructing a curve that is partially hidden or corrupted by minimizing the functional $\int\sqrt{1+K_\gamma^2}\,ds$, depending both on the length and curvature $K$. We fix starting and ending points as well as initial and final directions. For this functional we discuss the problem of existence of minimizers on various functional spaces. We find nonexistence of minimizers in cases in which initial and final directions are considered with orientation. In this case, minimizing sequences of trajectories may converge to curves with angles. We instead prove the existence of minimizers for the “time-reparametrized” functional $\int\|\dot\gamma(t)\|\sqrt{1+K_\gamma^2}\,dt$ for all boundary conditions if the initial and final directions are considered regardless of orientation. In this case, minimizers may present cusps (at most two) but not angles.
Received in April 2009
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 270, Pages 43–56
DOI: https://doi.org/10.1134/S0081543810030041
Bibliographic databases:
Document Type: Article
UDC: 517.97+514.7
Language: English
Citation: Ugo Boscain, Grégoire Charlot, Francesco Rossi, “Existence of planar curves minimizing length and curvature”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 270, MAIK Nauka/Interperiodica, Moscow, 2010, 49–61; Proc. Steklov Inst. Math., 270 (2010), 43–56
Citation in format AMSBIB
\Bibitem{BosChaRos10}
\by Ugo~Boscain, Gr\'egoire~Charlot, Francesco~Rossi
\paper Existence of planar curves minimizing length and curvature
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 270
\pages 49--61
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768936}
\zmath{https://zbmath.org/?q=an:1215.53006}
\elib{https://elibrary.ru/item.asp?id=15249749}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 270
\pages 43--56
\crossref{https://doi.org/10.1134/S0081543810030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282431700004}
\elib{https://elibrary.ru/item.asp?id=17237219}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957353358}
Linking options:
  • https://www.mathnet.ru/eng/tm3008
  • https://www.mathnet.ru/eng/tm/v270/p49
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :57
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024