Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 274–278
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-274-278
(Mi timm2053)
 

A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$

V. I. Trofimovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Earlier, to confirm that one of the possibilities for the structure of vertex stabilizers of graphs with projective suborbits is realizable, we announced the existence of a connected graph $\Gamma$ admitting a group of automorphisms $G$ which is isomorphic to Aut$(Fi_{22})$ and has the following properties. First, the group $G$ acts transitively on the set of vertices of $\Gamma$, but intransitively on the set of $3$-arcs of $\Gamma$. Second, the stabilizer in $G$ of a vertex of $\Gamma$ induces on the neighborhood of this vertex a group $PSL_3(3)$ in its natural doubly transitive action. Third, the pointwise stabilizer in $G$ of a ball of radius 2 in $\Gamma$ is nontrivial. In this paper, we construct such a graph $\Gamma$ with $G ={\rm Aut}(\Gamma)$.
Keywords: graph, transitive locally projective group of automorphisms, Fischer group $Fi_{22}$.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-935
This work was performed as a part of the research conducted in the Ural Mathematical Center and supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-02-2023-935).
Received: 26.09.2023
Revised: 06.10.2023
Accepted: 09.10.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S300–S304
DOI: https://doi.org/10.1134/S0081543823060238
Bibliographic databases:
Document Type: Article
UDC: 512.542+519.175.1
MSC: 05E18, 20B25
Language: Russian
Citation: V. I. Trofimov, “A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a Nontrivial Stabilizer of a Ball of Radius $2$”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 274–278; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S300–S304
Citation in format AMSBIB
\Bibitem{Tro23}
\by V.~I.~Trofimov
\paper A Graph with a Locally Projective Vertex-Transitive Group of Automorphisms Aut($Fi_{22}$) Which Has a~Nontrivial Stabilizer of a Ball of Radius~$2$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 274--278
\mathnet{http://mi.mathnet.ru/timm2053}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-274-278}
\elib{https://elibrary.ru/item.asp?id=54950413}
\edn{https://elibrary.ru/vnvnsl}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S300--S304
\crossref{https://doi.org/10.1134/S0081543823060238}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185318793}
Linking options:
  • https://www.mathnet.ru/eng/timm2053
  • https://www.mathnet.ru/eng/timm/v29/i4/p274
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024