Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 283–291
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-283-291
(Mi timm2055)
 

On the best simultaneous approximation of functions in the Hardy space

M. Sh. Shabozovab

a Tajik National University, Dushanbe
b Dzhuraev Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe
References:
Abstract: In the Hardy spaces $H_{q,\rho}$ ($1\le q\le\infty$, $0<\rho\le1$), exact inequalities are found between the best simultaneous approximation of a function and the averaged moduli of smoothness of the angular boundary values of the $r$th derivatives. Some applications of these inequalities to the problem of finding the best upper bounds of the best simultaneous approximations of some classes of functions defined by moduli of smoothness and belonging to the Hardy space $H_{q,\rho}$ are given.
Keywords: best simultaneous approximation, Hardy space, upper bound, modulus of smoothness, majorant.
Received: 04.07.2023
Revised: 14.09.2023
Accepted: 18.09.2023
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42C10, 47A58
Language: Russian
Citation: M. Sh. Shabozov, “On the best simultaneous approximation of functions in the Hardy space”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 283–291
Citation in format AMSBIB
\Bibitem{Sha23}
\by M.~Sh.~Shabozov
\paper On the best simultaneous approximation of functions in the Hardy space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 283--291
\mathnet{http://mi.mathnet.ru/timm2055}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-283-291}
\elib{https://elibrary.ru/item.asp?id=54950415}
\edn{https://elibrary.ru/adehng}
Linking options:
  • https://www.mathnet.ru/eng/timm2055
  • https://www.mathnet.ru/eng/timm/v29/i4/p283
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024