Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 1, Pages 66–78 (Mi timm205)  

This article is cited in 3 scientific papers (total in 3 papers)

Pointwise estimates of polynomials orthogonal on a circle with respect to a weight not belonging to the spaces Lr (r>1).

V. M. Badkov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (205 kB) Citations (3)
References:
Abstract: Two-sided pointwise estimates are established for polynomials that are orthogonal on the circle |z|=1 with the weight φ(τ):=h(τ)|sin(τ/2)|1g(|sin(τ/2)|) (τR), where g(t) is a concave modulus of continuity slowly changing at zero such that t1g(t)L1[0,1] and h(τ) is a positive function from the class C2π with a modulus of continuity satisfying the integral Dini condition. The obtained estimates are applied to find the order of the distance from the point t=1 to the greatest zero of a polynomial orthogonal on the segment [-1,1].
Keywords: orthogonal polynomials, pointwise estimates, the Szegő function.
Received: 20.02.2009
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 265, Issue 1, Pages S64–S77
DOI: https://doi.org/10.1134/S0081543809060066
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Badkov, “Pointwise estimates of polynomials orthogonal on a circle with respect to a weight not belonging to the spaces Lr (r>1).”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 1, 2009, 66–78; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S64–S77
Citation in format AMSBIB
\Bibitem{Bad09}
\by V.~M.~Badkov
\paper Pointwise estimates of polynomials orthogonal on a~circle with respect to a~weight not belonging to the spaces $L^r$ ($r>1$).
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 1
\pages 66--78
\mathnet{http://mi.mathnet.ru/timm205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2728956}
\elib{https://elibrary.ru/item.asp?id=11929778}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 265
\issue , suppl. 1
\pages S64--S77
\crossref{https://doi.org/10.1134/S0081543809060066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268192700006}
Linking options:
  • https://www.mathnet.ru/eng/timm205
  • https://www.mathnet.ru/eng/timm/v15/i1/p66
  • This publication is cited in the following 3 articles:
    1. V. M. Badkov, “Estimates of the Lebesgue function of Fourier sums over trigonometric polynomials orthogonal with a weight not belonging to the spaces Lr (r>1)”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 21–32  mathnet  crossref  isi  elib
    2. Vasil'eva A.A., “Kolmogorov widths of weighted Sobolev classes on a domain for a special class of weights”, Russ. J. Math. Phys., 18:3 (2011), 353–385  crossref  mathscinet  zmath  adsnasa  isi  scopus
    3. V. M. Badkov, “Some properties of Jacobi polynomials orthogonal on a circle”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S49–S58  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :94
    References:87
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025