|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 1, Pages 59–65
(Mi timm204)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$
A. G. Babenkoa, Yu. V. Kryakinb a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Mathematical Institute University of Wroclaw
Abstract:
An application of the results about integral approximation of the characteristic function of an interval by the subspace $\tau_{n-1}$ of trigonometric polynomials of order at most $n-1$, which were obtained by the authors
earlier, to investigation of the Jackson inequality between the best uniform approximation of a continuous
periodic function by the subspace $\tau_{n-1}$ and its modulus of continuity of the second order is presented.
A respective method of uniform approximation of continuous periodic functions by trigonometric polynomials is
constructed.
Keywords:
integral approximation of a function by polynomials, the Jackson inequality.
Received: 02.02.2009
Citation:
A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval and the Jackson inequality in $C(\mathbb T)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 1, 2009, 59–65; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S56–S63
Linking options:
https://www.mathnet.ru/eng/timm204 https://www.mathnet.ru/eng/timm/v15/i1/p59
|
Statistics & downloads: |
Abstract page: | 1371 | Full-text PDF : | 150 | References: | 61 | First page: | 7 |
|