Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2009, Volume 15, Number 1, Pages 79–101 (Mi timm206)  

Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period

V. S. Balaganskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: In the space $L^2$ of real-valued measurable $2\pi$-periodic functions that are square summable on the period $[0,2\pi]$, the Jackson—Stechkin inequality
$$ E_n(f)\le\mathcal K_n(\delta,\omega)\omega(\delta,f),\quad f\in L^2, $$
is considered, where $E_n(f)$ is the value of the best approximation of the function $f$ by trigonometric polynomials of order at most $n$ and $\omega(\delta,f)$ is the modulus of continuity of the function f in $L^2$ of order 1 or 2. The value
$$ \mathcal K_n(\delta,\omega)=\sup\biggl\{\frac{E_n(f)}{\omega(\delta,f)}:f\in L^2\biggr\} $$
is found at the points $\delta=2\pi/m$ (where $m\in\mathbb N$) for $m\ge3n^2+2$ and $\omega=\omega_1$ as well as for $m\ge11n^4/3-1$ and $\omega=\omega_2$.
Keywords: Jackson-–Stechkin inequality, exact constant.
Received: 14.03.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 265, Issue 1, Pages S78–S102
DOI: https://doi.org/10.1134/S0081543809060078
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. S. Balaganskii, “Exact constant in the Jackson–Stechkin inequality in the space $L^2$ on the period”, Trudy Inst. Mat. i Mekh. UrO RAN, 15, no. 1, 2009, 79–101; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S78–S102
Citation in format AMSBIB
\Bibitem{Bal09}
\by V.~S.~Balaganskii
\paper Exact constant in the Jackson--Stechkin inequality in the space $L^2$ on the period
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2009
\vol 15
\issue 1
\pages 79--101
\mathnet{http://mi.mathnet.ru/timm206}
\elib{https://elibrary.ru/item.asp?id=11929779}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 265
\issue , suppl. 1
\pages S78--S102
\crossref{https://doi.org/10.1134/S0081543809060078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000268192700007}
Linking options:
  • https://www.mathnet.ru/eng/timm206
  • https://www.mathnet.ru/eng/timm/v15/i1/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :136
    References:71
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025