Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 193–216
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-193-216
(Mi timm2048)
 

On the weighted trigonometric Bojanov–Chebyshev extremal problem

B. Nagya, Sz. Gy. Révészb

a Bolyai Institute, University of Szeged
b Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
References:
Abstract: We investigate the weighted Bojanov–Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\|T\|_{w,C(\mathbb{T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus $\mathbb{T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\nu_1,\ldots,\nu_n$ of root factors $|\sin(\pi(t-z_j))|^{\nu_j}$. If the $\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.
Keywords: minimax and maximin problems, kernel function, sum of translates function, vector of local maxima, equioscillation, majorization.
Funding agency Grant number
Hungarian National Research, Development and Innovation Fund TKP2021-NVA-09
K-132097
This research of Béla Nagy was supported by project TKP2021-NVA-09. Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme. The work of Sz. Gy. Révész was supported in part by Hungarian National Research, Development and Innovation Fund project # K-132097.
Received: 24.08.2023
Revised: 18.10.2023
Accepted: 06.11.2023
Bibliographic databases:
Document Type: Article
MSC: 26A51, 26D07, 49K35
Language: English
Citation: B. Nagy, Sz. Gy. Révész, “On the weighted trigonometric Bojanov–Chebyshev extremal problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 193–216
Citation in format AMSBIB
\Bibitem{NagRev23}
\by B.~Nagy, Sz.~Gy.~R{\'e}v{\'e}sz
\paper On the weighted trigonometric Bojanov--Chebyshev extremal problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 193--216
\mathnet{http://mi.mathnet.ru/timm2048}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-193-216}
\elib{https://elibrary.ru/item.asp?id=54950408}
\edn{https://elibrary.ru/iiudsv}
Linking options:
  • https://www.mathnet.ru/eng/timm2048
  • https://www.mathnet.ru/eng/timm/v29/i4/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :86
    References:22
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024