Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 217–228
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-217-228
(Mi timm2049)
 

Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative

S. I. Novikov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: An exact solution is found to the problem of interpolation on a finite interval $[a,b]$ with the smallest $L_{2}$-norm of the $r$th-order derivative $(r\geq 2)$ by functions $f$: $[a,b]\to \mathbb{R}$ with absolutely continuous $(r-1)$th-order derivatives for finite collections of data from the unit ball of the space $l_{2}^{N}$. Interpolation is performed at nodes of an arbitrary grid $\Delta _{N}$: $a=x_{1}<x_{2}<\cdots<x_{N}=b$. The smallest value of the $L_{2}$-norm on the class of interpolated data is expressed in terms of the largest eigenvalue of a certain square matrix and its determinant. The paper improves the classical results of spline theory related to the minimum norm property, which were originally obtained by J. Holladay and then developed by J. Ahlberg, E. Nilson, and J. Walsh, as well as by V. N. Malozemov and A. B. Pevnyi.
Keywords: interpolation, natural splines, matrix eigenvalue.
Received: 09.06.2023
Revised: 30.06.2024
Accepted: 03.07.2023
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A05, 41A15
Language: Russian
Citation: S. I. Novikov, “Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 217–228
Citation in format AMSBIB
\Bibitem{Nov23}
\by S.~I.~Novikov
\paper Optimal interpolation on an interval with the smallest mean-square norm of the $r$th derivative
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 217--228
\mathnet{http://mi.mathnet.ru/timm2049}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-217-228}
\elib{https://elibrary.ru/item.asp?id=54950409}
\edn{https://elibrary.ru/grabcs}
Linking options:
  • https://www.mathnet.ru/eng/timm2049
  • https://www.mathnet.ru/eng/timm/v29/i4/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024