Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 4, Pages 181–192
DOI: https://doi.org/10.21538/0134-4889-2023-29-4-181-192
(Mi timm2047)
 

Arithmetic graphs and factorized finite groups

V. I. Murashka

Gomel State University named after Francisk Skorina
References:
Abstract: The Hawkes graph $\Gamma_H(G)$ of a group $G$ is the directed graph with vertex set $\pi(G)$ that has an edge $(p, q)$ whenever $q\in\pi(G/O_{p',p}(G))$. The Sylow graph $\Gamma_s(G)$ of a group $G$ is the directed graph with vertex set $\pi(G)$ that has an edge $(p, q)$ whenever $q \in\pi(N_G(P)/PC_G(P))$ for some Sylow $p$-subgroup $P$ of $G$. The $N$-critical graph $\Gamma_{Nc}(G)$ of a group $G$ is the directed graph with vertex set $\pi(G)$ that has an edge $(p, q)$ whenever $G$ contains a Schmidt $(p, q)$-subgroup, i.e., a Schmidt $\{p, q\}$-subgroup with a normal Sylow $p$-subgroup. The paper studies the Hawkes, Sylow, and $N$-critical graphs of products of totally permutable, mutually permutable, and $\mathfrak{N}$-connected subgroups.
Keywords: finite group, Hawkes graph, Sylow graph, $N$-critical graph, product of totally permutable subgroups, product of mutually permutable subgroups, $\mathfrak{N}$-connected subgroups.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф23РНФ-237
This work was supported by the Belarusian Republican Foundation for Fundamental Research (project no. $\Phi$23PH$\Phi$-237).
Received: 09.06.2023
Revised: 08.08.2023
Accepted: 28.08.2023
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D40
Language: Russian
Citation: V. I. Murashka, “Arithmetic graphs and factorized finite groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 4, 2023, 181–192
Citation in format AMSBIB
\Bibitem{Mur23}
\by V.~I.~Murashka
\paper Arithmetic graphs and factorized finite groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 4
\pages 181--192
\mathnet{http://mi.mathnet.ru/timm2047}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-4-181-192}
\elib{https://elibrary.ru/item.asp?id=54950406}
\edn{https://elibrary.ru/rjjmpp}
Linking options:
  • https://www.mathnet.ru/eng/timm2047
  • https://www.mathnet.ru/eng/timm/v29/i4/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024