Abstract:
We consider a system of gas dynamics equations with the state equation of a monatomic gas. The equations admit a group of transformations with a 14-dimensional Lie algebra. We consider 4-dimensional subalgebras containing the projective operator from the optimal system of subalgebras. The invariants of the basis operators are computed. Eight simple invariant solutions of rank 0 are obtained. Of these, four physical solutions specify a gas motion with a linear velocity field and one physical solution specifies a motion with a linear dependence of components of the velocity vector on two space coordinates. All these solutions except one have variable entropy. The motion of gas particles as a whole is constructed for the isentropic solution. The solutions obtained have a density singularity on a constant or moving plane, which is a boundary with vacuum or a wall.
Keywords:
gas dynamics equations, projective operator, invariant solution.
Citation:
R. F. Nikonorova, “Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 115–132; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S186–S203
\Bibitem{Nik23}
\by R.~F.~Nikonorova
\paper Simple Invariant Solutions of the Dynamic Equation for a Monatomic Gas
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 115--132
\mathnet{http://mi.mathnet.ru/timm2003}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-115-132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610496}
\elib{https://elibrary.ru/item.asp?id=53846809}
\edn{https://elibrary.ru/npcumd}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S186--S203
\crossref{https://doi.org/10.1134/S0081543823030161}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171325819}
Linking options:
https://www.mathnet.ru/eng/timm2003
https://www.mathnet.ru/eng/timm/v29/i2/p115
This publication is cited in the following 1 articles:
Dilara Siraeva, “Partially invariant solution with an arbitrary surface of blow-up for the gas dynamics equations admitting pressure translation”, International Journal of Non-Linear Mechanics, 2024, 104904