Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 2, Pages 104–114
DOI: https://doi.org/10.21538/0134-4889-2023-29-2-104-114
(Mi timm2002)
 

On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space

V. V. Napalkova, A. A. Nuyatovb

a Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa
b Nizhny Novgorod State Technical University
References:
Abstract: We study Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space $F$, which consists of entire functions whose square modulus is summable on the plane ${\mathbb C}$ with measure $d\sigma(z):= (1/\pi)e^{-|z|^2}\, dv(z)$, where $dv(z)$ is an area element:
\begin{equation*} \|f\|^2_F=\int_{\mathbb C}|f(z)|^2\, d\sigma(z)<\infty \quad \forall f\in F. \end{equation*}
The space $\overline F$ consists of complex conjugates of functions from $F$, and $\|\overline f\|_{\overline F}=\|f\|_{F}\,\forall f\in F$. We consider classes of countable sets $\Omega_0\subset {\mathbb C}$ of the form
$$ \Omega_0\stackrel{\mathrm{def}}{=}\{z\in{\mathbb C}\colon \ z=a\cdot n+ib\cdot m,\ a\cdot b=\pi\ \forall n,m\in {\mathbb Z}\}, $$
where $a$ and $b$ are some fixed (depending only on the set $\Omega_0$) nonzero real numbers. The sets $\Omega_0$ are called von Neumann lattices. For a real number $k>1$, we form the set $\Omega_0^k\stackrel{\mathrm{def}}{=}k\cdot\Omega_0$. We establish that the space of sequences of complex numbers $V_k$ formed by the traces of functions from some subspace $F^k$ of the space $F$ on the set $\Omega_0^k$ is equivalent to the space of sequences of complex numbers $U_k$ formed by the traces of functions from a subspace $\overline F^k$ of the space $\overline F$ on the set $\Omega_0^k$. The spaces $\overline F^k$ and $\overline F$ consist of complex conjugates of the functions from the spaces $F^k$ and $F$, respectively. Moreover, the norms in the spaces $V_k$ and $U_k$ are induced by the norms of the spaces $F^k$ and $\overline F^k$. To derive the main results of the paper, we use the result of K. Seip on discrete sampling sets of the Bargmann–Fock space. The results of the authors related to the questions of the coincidence or equivalence of Hilbert spaces with a reproducing kernel are applied. Here the notion of consistency of two complete systems of functions, introduced earlier by the authors, plays an important role. The paper presents counterexamples. We construct nonequivalent Hilbert spaces of complex numbers $V$ and $U$ that are the traces on some discrete subset of the complex plane of functions from $F$ that are not equivalent.
Keywords: decomposition systems similar to orthogonal ones, Hilbert space with reproducing kernel, problem of describing a dual space, Bargmann–Fock space, exponential frame, von Neumann lattice.
Received: 23.03.2023
Revised: 28.04.2023
Accepted: 02.05.2023
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Napalkov, A. A. Nuyatov, “On Hilbert spaces of sequences formed by values of functions from the Bargmann–Fock space”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 104–114
Citation in format AMSBIB
\Bibitem{NapNuy23}
\by V.~V.~Napalkov, A.~A.~Nuyatov
\paper On Hilbert spaces of sequences formed by values of functions from the Bargmann--Fock space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 104--114
\mathnet{http://mi.mathnet.ru/timm2002}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-104-114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610495}
\elib{https://elibrary.ru/item.asp?id=53846807}
\edn{https://elibrary.ru/cydktj}
Linking options:
  • https://www.mathnet.ru/eng/timm2002
  • https://www.mathnet.ru/eng/timm/v29/i2/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:108
    Full-text PDF :43
    References:22
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024