Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 3, Pages 246–255
DOI: https://doi.org/10.21538/0134-4889-2021-27-3-246-255
(Mi timm1853)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stability Region for Discrete Time Systems and Its Boundary

V. Dzhafarov, T. Büyükköroğlu, H. Akyar

Eskisehir Technical University
Full-text PDF (199 kB) Citations (1)
References:
Abstract: In this paper we investigate the Schur stability region of the $n$th order polynomials in the coefficient space. Parametric description of the boundary set is obtained. We show that all the boundary can be obtained as a multilinear image of three $(n-1)$-dimensional boxes. For even and odd $n$ these boundary boxes are different. Analogous properties for the classical multilinear reflection map are unknown. It is shown that for $n \geq 4$, both two parts of the boundary which are pieces of the corresponding hyperplanes are nonconvex. Polytopes in the nonconvex stability region are constructed. A number of examples are provided.
Keywords: Schur stability, stability region, polytope, boundary set.
Received: 25.03.2021
Revised: 01.06.2021
Accepted: 15.06.2021
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 11C08, 52B11, 93D05
Language: English
Citation: V. Dzhafarov, T. Büyükköroğlu, H. Akyar, “Stability Region for Discrete Time Systems and Its Boundary”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 3, 2021, 246–255
Citation in format AMSBIB
\Bibitem{DzhBuyAky21}
\by V.~Dzhafarov, T.~B\"uy\"ukk\"oro{\u g}lu, H.~Akyar
\paper Stability Region for Discrete Time Systems and Its Boundary
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 3
\pages 246--255
\mathnet{http://mi.mathnet.ru/timm1853}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-3-246-255}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755375800020}
\elib{https://elibrary.ru/item.asp?id=46502705}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123606566}
Linking options:
  • https://www.mathnet.ru/eng/timm1853
  • https://www.mathnet.ru/eng/timm/v27/i3/p246
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :43
    References:26
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024