Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, Volume 27, Number 3, Pages 237–245
DOI: https://doi.org/10.21538/0134-4889-2021-27-3-237-245
(Mi timm1852)
 

A Survey of Hopf-Lax Formulas and Quasiconvexity in PDEs

E. N. Barron

Loyola University Chicago
References:
Abstract: This is a short survey of recent results obtained by the author and collaborators primarily on Hopf-Lax formulas for Hamilton-Jacobi equations and obstacle problems. The initiation of the use of quasiconvex (i.e., level convex) functions in $L^\infty$ control and differential games led to such formulas and is briefly reviewed. Dedicated to the memory of Academician A. I. Subbotin.
Keywords: Hopf-Lax; viscosity solution; Hamilton-Jacobi; quasiconvex.
Received: 17.03.2021
Revised: 11.05.2021
Accepted: 24.05.2021
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: English
Citation: E. N. Barron, “A Survey of Hopf-Lax Formulas and Quasiconvexity in PDEs”, Trudy Inst. Mat. i Mekh. UrO RAN, 27, no. 3, 2021, 237–245
Citation in format AMSBIB
\Bibitem{Bar21}
\by E.~N.~Barron
\paper A Survey of Hopf-Lax Formulas and Quasiconvexity in PDEs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2021
\vol 27
\issue 3
\pages 237--245
\mathnet{http://mi.mathnet.ru/timm1852}
\crossref{https://doi.org/10.21538/0134-4889-2021-27-3-237-245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755375800019}
\elib{https://elibrary.ru/item.asp?id=46502704}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123599379}
Linking options:
  • https://www.mathnet.ru/eng/timm1852
  • https://www.mathnet.ru/eng/timm/v27/i3/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024