Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 110–125
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-110-125
(Mi timm1579)
 

This article is cited in 2 scientific papers (total in 2 papers)

Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials

M. V. Deikalova, A. Yu. Torgashova

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (273 kB) Citations (2)
References:
Abstract: Let $\upsilon$ be a weight on $(-1,1),$ i.e., a measurable integrable nonnegative function nonzero almost everywhere on $(-1,1)$. Denote by $L^\upsilon(-1,1)$ the space of real-valued functions $f$ integrable with weight $\upsilon$ on $(-1,1)$ with the norm $\|f\|=\int_{-1}^{1}|f(x)|\upsilon(x)\,dx$. We consider the problems of the best one-sided approximation (from below and from above) in the space $L^\upsilon(-1,1)$ to the characteristic function of an interval $(a,b),$ $-1<a<b<1,$ by the set of algebraic polynomials of degree not exceeding a given number. We solve the problems in the case where $a$ and $b$ are nodes of a positive quadrature formula under some conditions on the degree of its precision as well as in the case of a symmetric interval $(-h,h),$ $0<h<1,$ for an even weight $\upsilon$.
Keywords: one-sided approximation, characteristic function of an interval, algebraic polynomials.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 01.09.2018
Revised: 09.10.2018
Accepted: 15.10.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S68–S82
DOI: https://doi.org/10.1134/S0081543820020066
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 41A10, 41A29, 41A63
Language: Russian
Citation: M. V. Deikalova, A. Yu. Torgashova, “Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 110–125; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S68–S82
Citation in format AMSBIB
\Bibitem{DeiTor18}
\by M.~V.~Deikalova, A.~Yu.~Torgashova
\paper Best One-Sided Approximation in the Mean of the Characteristic Function of an Interval by Algebraic Polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 110--125
\mathnet{http://mi.mathnet.ru/timm1579}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-110-125}
\elib{https://elibrary.ru/item.asp?id=36517703}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S68--S82
\crossref{https://doi.org/10.1134/S0081543820020066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464575200008}
Linking options:
  • https://www.mathnet.ru/eng/timm1579
  • https://www.mathnet.ru/eng/timm/v24/i4/p110
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024