Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 104–109
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-104-109
(Mi timm1578)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs

M. L. Gridnev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (159 kB) Citations (1)
References:
Abstract: For a function $f$ continuous on a closed interval, its modulus of fractality $\nu(f,\varepsilon)$ is defined as the function that maps any $\varepsilon>0$ to the smallest number of squares of size $\varepsilon$ that cover the graph of $f$. The following condition for the uniform convergence of the Fourier series of $f$ is obtained in terms of the modulus of fractality and the modulus of continuity $\omega(f,\delta)$: if
$$ \omega (f,\pi/n) \ln\bigg(\frac{\nu(f,\pi/n)}{n}\bigg) \longrightarrow 0\ \ \ as \ n\longrightarrow+\infty, $$
then the Fourier series of $f$ converges uniformly. This condition refines the known Dini–Lipschitz test. In addition, for the growth order of the partial sums $S_n(f,x)$ of a continuous function $f$, we derive an estimate that is uniform in $x\in[0,2\pi]$:
$$ S_n(f,x)=o\bigg( \ln \bigg(\frac{\nu (f,\pi / n)}{n}\bigg)\bigg). $$
The optimality of this estimate is shown.
Keywords: trigonometric Fourier series, uniform convergence, fractal dimension.
Funding agency Grant number
Russian Science Foundation 14-11-00702
This work was supported by the Russian Science Foundation (project no. 14-11-00702).
Received: 31.08.2018
Revised: 28.10.2018
Accepted: 05.11.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S106–S111
DOI: https://doi.org/10.1134/S008154382002008X
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
MSC: 42A20
Language: Russian
Citation: M. L. Gridnev, “Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 104–109; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S106–S111
Citation in format AMSBIB
\Bibitem{Gri18}
\by M.~L.~Gridnev
\paper Convergence of Trigonometric Fourier Series of Functions with a Constraint on the Fractality of Their Graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 104--109
\mathnet{http://mi.mathnet.ru/timm1578}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-104-109}
\elib{https://elibrary.ru/item.asp?id=36517702}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S106--S111
\crossref{https://doi.org/10.1134/S008154382002008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464575200007}
Linking options:
  • https://www.mathnet.ru/eng/timm1578
  • https://www.mathnet.ru/eng/timm/v24/i4/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :76
    References:43
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024