Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 126–134
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-126-134
(Mi timm1580)
 

On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$

V. I. Zenkovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: In Theorem 1, it is proved for a finite group $G$ with socle $L_2(2^m)\times L_2(2^n)$ and nilpotent subgroups $A$ and $B$ that the condition $\min_G(A,B)\ne 1$ implies that $n=m=2$ and the subgroups $A$ and $B$ are $2$-groups. Here the subgroup $\min_G(A,B)$ is generated by smallest-order intersections of the form $A\cap B^g$, $g\in G$, and the subgroup $\mathrm{Min}_G(A,B)$ is generated by all intersections of the form $A\cap B^g$, $g\in G$, that are minimal with respect to inclusion. In Theorem 2, for a finite group $G$ with socle $A_5\times A_5$ and a Sylow 2-subgroup $S$, we give a description of the subgroups $\min_G(S,S)$ and $\mathrm{Min}_G(S,S)$. On the basis of Theorem 2, in Theorem 3 for a finite group $G$ with socle $A_5\times A_5$ we describe up to conjugation all pairs of nilpotent subgroups $(A,B)$ of $G$ for which $\min_G(A,B)\ne 1$.
Keywords: finite groups, nilpotent subgroup, intersection of subgroups.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 03.07.2018
Revised: 24.10.2018
Accepted: 29.10.2018
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D05
Language: Russian
Citation: V. I. Zenkov, “On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 126–134
Citation in format AMSBIB
\Bibitem{Zen18}
\by V.~I.~Zenkov
\paper On intersections of nilpotent subgroups in finite groups with socle $L_2(2^m)\times L_2(2^n)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 126--134
\mathnet{http://mi.mathnet.ru/timm1580}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-126-134}
\elib{https://elibrary.ru/item.asp?id=36517704}
Linking options:
  • https://www.mathnet.ru/eng/timm1580
  • https://www.mathnet.ru/eng/timm/v24/i4/p126
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :48
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024