Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 92–103
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-92-103
(Mi timm1577)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis

D. V. Gorbachev

Tula State University
Full-text PDF (224 kB) Citations (9)
References:
Abstract: We investigate a weighted version of the Nikolskii-Bernstein inequality
$$ \|\Lambda_{\alpha}^{k}f\|_{q,\alpha}\le \mathcal{L}(\alpha,p,q,k)\sigma^{(2\alpha+2)(1/p-1/q)+k}\|f\|_{p,\alpha},\quad \alpha\ge -1/2, $$
on the subspace $\mathcal{E}^{\sigma}\cap L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ of entire functions of exponential type. Here $\Lambda_{\alpha}$ is the Dunkl differential-difference operator whose second power generates the Bessel differential operator $B_{\alpha}=\displaystyle\frac{d^{2}}{dx^{2}}+\displaystyle\frac{2\alpha+1}{x}\,\displaystyle\frac{d}{dx}$. For $(p,q)=(1,\infty)$, we compute the following sharp constants for nonnegative functions:
$$ \mathcal{L}_{0}^{*}(\alpha)_{+}=\frac{1}{2^{2\alpha+2}},\quad \mathcal{L}_{1}^{*}(\alpha)_{+}=\frac{1}{2^{2\alpha+4}(\alpha+2)}, $$
where $\mathcal{L}_{r}^{*}(\alpha)_{+}= (\alpha+1)c_{\alpha}^{-2}\mathcal{L}(\alpha,1,\infty,2r)_{+}$ denotes the normalized Nikolskii-Bernstein constant. There are unique (up to a constant factor) extremizers $j_{\alpha+1}^{2}(x/2)$ and $x^{2}j_{\alpha+2}^{2}(x/2)$, respectively. These results are proved with the use of the Markov quadrature formula with nodes at zeros of the Bessel function and the following generalization of Arestov, Babenko, Deikalova, and Horváth's recent result:
$$ \mathcal{L}(\alpha,p,\infty,2r)=\sup B_{\alpha}^{r}f(0),\quad r\in \mathbb{Z}_{+}, $$
where the supremum is taken over all even real functions on $\mathbb{R}$ belonging to $\mathcal{E}_{p,\alpha}^{1}$. Our approach is based on the one-dimensional Dunkl harmonic analysis. In particular, we use the even positive Dunkl-type generalized translation operator $T_{\alpha}^{t}$, which is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant 1, is invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$, and commutes with $B_{\alpha}$.
Keywords: weighted Nikolskii-Bernstein inequality, sharp constant, entire function of exponential type, Dunkl transform, generalized translation operator, Bessel function.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This work was supported by the Russian Science Foundation (project no. 18-11-00199).
Received: 05.09.2018
Revised: 15.11.2018
Accepted: 19.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A17
Language: Russian
Citation: D. V. Gorbachev, “Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 92–103
Citation in format AMSBIB
\Bibitem{Gor18}
\by D.~V.~Gorbachev
\paper Nikolskii - Bernstein constants for nonnegative entire functions of exponential type on the axis
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 92--103
\mathnet{http://mi.mathnet.ru/timm1577}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-92-103}
\elib{https://elibrary.ru/item.asp?id=36517701}
Linking options:
  • https://www.mathnet.ru/eng/timm1577
  • https://www.mathnet.ru/eng/timm/v24/i4/p92
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :62
    References:44
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024