Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 158–172
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-158-172
(Mi timm1531)
 

This article is cited in 5 scientific papers (total in 5 papers)

Cameron-Liebler line classes in PG(n, 5)

I. Matkin

Chelyabinsk State University
Full-text PDF (231 kB) Citations (5)
References:
Abstract: A Cameron-Liebler line class with parameter $x$ in a finite projective geometry PG$(n, q)$ of dimension $n$ over a field with $q$ elements is a set $\mathcal{L}$ of lines such that any line $\ell$ intersects $x(q+1)+\chi_{\mathcal{L}}(\ell)(q^{n-1}+\dots+q^2-1)$ lines from $\mathcal{L}$, where $\chi_{\mathcal{L}}$ is the characteristic function of the set $\mathcal{L}$. The generalized Cameron-Liebler conjecture states that for $n>3$ all Cameron-Liebler classes are known and have a trivial structure in some sense (more exactly, up to complement, the empty set, a point-pencil, all lines of a hyperplane, and the union of the last two for nonincident point and hyperplane). The validity of the conjecture was proved earlier by other authors for the cases $q=2$, 3, and 4. In the present paper we describe an approach to proving the conjecture for given $q$ under the assumption that all Cameron-Liebler classes in PG$(3,q)$ are known. We use this approach to prove the generalized Cameron-Liebler conjecture in the case $q=5$.
Keywords: finite projective geometry, Cameron-Liebler line classes.
Funding agency Grant number
Russian Foundation for Basic Research 17-301-50004
Received: 16.02.2018
Bibliographic databases:
Document Type: Article
UDC: 514.146
MSC: 51E20, 05B25
Language: Russian
Citation: I. Matkin, “Cameron-Liebler line classes in PG(n, 5)”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 158–172
Citation in format AMSBIB
\Bibitem{Mat18}
\by I.~Matkin
\paper Cameron-Liebler line classes in PG(n, 5)
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 158--172
\mathnet{http://mi.mathnet.ru/timm1531}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-158-172}
\elib{https://elibrary.ru/item.asp?id=35060686}
Linking options:
  • https://www.mathnet.ru/eng/timm1531
  • https://www.mathnet.ru/eng/timm/v24/i2/p158
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :46
    References:23
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024