Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 173–184
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-173-184
(Mi timm1532)
 

Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A distance-regular graph $\Gamma$ with intersection array $\{176,135,32,1;1,16,135,176\}$ is an $AT4$-graph. Its antipodal quotient $\bar\Gamma$ is a strongly regular graph with parameters $(672,176$, $40,48)$. In both graphs the neighborhoods of vertices are strongly regular with parameters $(176,40,12,8)$. We study the automorphisms of these graphs. In particular, the graph $\Gamma$ is not arc-transitive. If $G=\mathrm{Aut}\,(\Gamma)$ contains an element of order 11, acts transitively on the vertex set of $\Gamma$, and $S(G)$ fixes each antipodal class, then the full preimage of the group $(G/S(G))'$ is an extension of a group of order 3 by $M_{22}$ or $U_6(2)$. We describe automorphism groups of strongly regular graphs with parameters $(176,40,12,8)$ and $(672,176,40,48)$ in the vertex-symmetric case.
Keywords: strongly regular graph, distance-regular graph, graph automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Received: 26.12.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S102–S113
DOI: https://doi.org/10.1134/S0081543819040114
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: A. A. Makhnev, D. V. Paduchikh, “Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 173–184; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S102–S113
Citation in format AMSBIB
\Bibitem{MakPad18}
\by A.~A.~Makhnev, D.~V.~Paduchikh
\paper Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 173--184
\mathnet{http://mi.mathnet.ru/timm1532}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-173-184}
\elib{https://elibrary.ru/item.asp?id=35060687}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S102--S113
\crossref{https://doi.org/10.1134/S0081543819040114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451633100016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073563534}
Linking options:
  • https://www.mathnet.ru/eng/timm1532
  • https://www.mathnet.ru/eng/timm/v24/i2/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :27
    References:26
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024