Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 152–157
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-152-157
(Mi timm1530)
 

This article is cited in 1 scientific paper (total in 1 paper)

Products and joins of locally normal Fitting classes

A. V. Martsinkevich, N. T. Vorob'ev

Vitebsk State University named after P. M. Masherov
Full-text PDF (181 kB) Citations (1)
References:
Abstract: Let $\pi$ be a nonempty set of primes. A nontrivial Fitting class $\mathfrak{F}$ is said to be normal in the class $\mathfrak{S}_\pi$ of all finite soluble $\pi$-groups or $\pi$-normal (we write $\mathfrak{F\trianglelefteq S}_\pi$) if $\mathfrak{F\subseteq S}_\pi$ and the $\mathfrak{F}$-radical of every $\pi$-group $G$ is a $\mathfrak{F}$-maximal subgroup of $G$. If $\pi$ is the set of all primes, then $\mathfrak{F}$ is called normal. The product $\mathfrak{FH}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is called $\pi$-normal if $\mathfrak{FH}$ is a $\pi$-normal Fitting class. We prove the existence of $\pi$-normal products of Fitting classes factorizable by non-$\pi$-normal factors. Assume that $\mathbb{P}$ is the set of all primes, $\varnothing\neq\pi\subseteq\mathbb{P}$, $\mathfrak{F}$ is some Fitting class of $\pi$-groups, and $\omega=\sigma(\mathfrak{F})$ is the set of all prime divisors of all groups from $\mathfrak{F}$. It is proved that if $\mathfrak{F^2=F}$ and $\mathfrak{H}$ is the class of all $\pi$-groups with central $\omega$-socle, then the product $\mathfrak{FH}$ is $\pi$-normal although each of the factors $\mathfrak{F}$ and $\mathfrak{H}$ is not $\pi$-normal. The lattice join $\mathfrak{F\vee H}$ of Fitting classes $\mathfrak{F}$ and $\mathfrak{H}$ is the Fitting class generated by $\mathfrak{F\cup H}$. If $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class, then $\mathfrak{F\vee H}$ is called $\pi$-normal. Let $\mathfrak{F}$ and $\mathfrak{H}$ be Fitting classes of $\pi$-groups. We prove that the lattice join $\mathfrak{F\vee H}$ is a $\pi$-normal Fitting class if and only if $\mathfrak{F}$ or $\mathfrak{H}$ is a $\pi$-normal Fitting class.
Keywords: $\mathfrak{F}$-radical, Fitting class, $\pi$-normal Fitting class, join of Fitting classes.
Received: 16.11.2017
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D10, 20D15
Language: Russian
Citation: A. V. Martsinkevich, N. T. Vorob'ev, “Products and joins of locally normal Fitting classes”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 152–157
Citation in format AMSBIB
\Bibitem{MarVor18}
\by A.~V.~Martsinkevich, N.~T.~Vorob'ev
\paper Products and joins of locally normal Fitting classes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 152--157
\mathnet{http://mi.mathnet.ru/timm1530}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-152-157}
\elib{https://elibrary.ru/item.asp?id=35060685}
Linking options:
  • https://www.mathnet.ru/eng/timm1530
  • https://www.mathnet.ru/eng/timm/v24/i2/p152
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :41
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024