Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 53–62
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-53-62
(Mi timm1496)
 

This article is cited in 5 scientific papers (total in 5 papers)

Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems

M. I. Gomoyunovab, N. Yu. Lukoyanovab, A. R. Plaksinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (215 kB) Citations (5)
References:
Abstract: A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional questions of the correct transition from the infinite-dimensional functional argument of the desired solution to the finite-dimensional one. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by ordinary Hamilton-Jacobi equations with partial derivatives is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.
Keywords: Hamilton-Jacobi equations, generalized solutions, coinvariant derivatives, finite-dimensional approximations, time-delay systems.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-3047.2017.1
Received: 01.10.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S68–S75
DOI: https://doi.org/10.1134/S0081543819020081
Bibliographic databases:
Document Type: Article
UDC: 517.955
MSC: 35F21, 49L99, 34K05
Language: Russian
Citation: M. I. Gomoyunov, N. Yu. Lukoyanov, A. R. Plaksin, “Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 53–62; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S68–S75
Citation in format AMSBIB
\Bibitem{GomLukPla18}
\by M.~I.~Gomoyunov, N.~Yu.~Lukoyanov, A.~R.~Plaksin
\paper Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 53--62
\mathnet{http://mi.mathnet.ru/timm1496}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-53-62}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3782935}
\elib{https://elibrary.ru/item.asp?id=32604044}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S68--S75
\crossref{https://doi.org/10.1134/S0081543819020081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066867545}
Linking options:
  • https://www.mathnet.ru/eng/timm1496
  • https://www.mathnet.ru/eng/timm/v24/i1/p53
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :72
    References:62
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024