Abstract:
A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional questions of the correct transition from the infinite-dimensional functional argument of the desired solution to the finite-dimensional one. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by ordinary Hamilton-Jacobi equations with partial derivatives is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.
Citation:
M. I. Gomoyunov, N. Yu. Lukoyanov, A. R. Plaksin, “Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 53–62; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S68–S75
\Bibitem{GomLukPla18}
\by M.~I.~Gomoyunov, N.~Yu.~Lukoyanov, A.~R.~Plaksin
\paper Approximation of minimax solutions to Hamilton-Jacobi functional equations for delay systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 53--62
\mathnet{http://mi.mathnet.ru/timm1496}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-53-62}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3782935}
\elib{https://elibrary.ru/item.asp?id=32604044}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S68--S75
\crossref{https://doi.org/10.1134/S0081543819020081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066867545}
Linking options:
https://www.mathnet.ru/eng/timm1496
https://www.mathnet.ru/eng/timm/v24/i1/p53
This publication is cited in the following 5 articles:
M. I. Gomoyunov, N. Yu. Lukoyanov, “Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems”, Russian Math. Surveys, 79:2 (2024), 229–324
A. V. Kim, “Vvedenie v teoriyu pozitsionnykh differentsialnykh igr sistem s posledeistviem (na osnove metodologii i-gladkogo analiza”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 268–295
Hidehiro Kaise, “Convergence of Discrete-Time Deterministic Games to Path-Dependent Isaacs Partial Differential Equations Under Quadratic Growth Conditions”, Appl Math Optim, 86:1 (2022)
Mikhail I. Gomoyunov, Nikolai Yu. Lukoyanov, Anton R. Plaksin, “Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised”, Appl Math Optim, 84:S1 (2021), 1087
M. I. Gomoyunov, A. R. Plaksin, “On basic equation of differential games for neutral-type systems”, Mech. Sol., 54:2 (2019), 131–143