Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 40–52
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-40-52
(Mi timm1495)
 

This article is cited in 3 scientific papers (total in 3 papers)

Optimal trajectory in $\mathbb{R}^2$ under observation

V. I. Berdyshev, V. B. Kostousov, A. A. Popov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (331 kB) Citations (3)
References:
Abstract: We study the problem of forming a trajectory in a given “corridor” from $\mathbb{R}^2$ such that the minimum distance from this trajectory to observers is maximal. Each observer is located outside the corridor and has an open convex observation cone overlapping the corridor. The positions of the observers and the cones are fixed. An observer can measure the distance to an object moving along the trajectory when the object is inside its cone. We describe an “optimal corridor”, i.e., the set of all optimal trajectories with given initial and terminal points. A similar problem is solved in the case when the moving object is a solid body, more exactly, a disk. For practical calculations, we propose algorithms that construct an optimal corridor and a shortest optimal trajectory for a solid object in a discrete statement. The initial continuous conditions of the problem, such as the boundaries of the corridor and the observation cones, are projected onto a discrete regular grid, and a discrete realization of the optimal corridor and its boundaries are constructed on the grid in the form of 8-connected sequences of grid nodes. The shortest optimal trajectory of the solid object is found using Dijkstra's algorithm.
Keywords: moving object, observer, optimal trajectory, shortest path.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Ural Branch of the Russian Academy of Sciences 18-1-1-14
Received: 29.12.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S31–S43
DOI: https://doi.org/10.1134/S0081543819020056
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: 00A05
Language: Russian
Citation: V. I. Berdyshev, V. B. Kostousov, A. A. Popov, “Optimal trajectory in $\mathbb{R}^2$ under observation”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 40–52; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S31–S43
Citation in format AMSBIB
\Bibitem{BerKosPop18}
\by V.~I.~Berdyshev, V.~B.~Kostousov, A.~A.~Popov
\paper Optimal trajectory in $\mathbb{R}^2$ under observation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 40--52
\mathnet{http://mi.mathnet.ru/timm1495}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-40-52}
\elib{https://elibrary.ru/item.asp?id=32604043}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S31--S43
\crossref{https://doi.org/10.1134/S0081543819020056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066827364}
Linking options:
  • https://www.mathnet.ru/eng/timm1495
  • https://www.mathnet.ru/eng/timm/v24/i1/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :61
    References:44
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024