Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 63–75
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-63-75
(Mi timm1497)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the geometry of reachable sets for control systems with isoperimetric constraints

M. I. Gusevab, I. V. Zykova

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (236 kB) Citations (4)
References:
Abstract: A nonlinear control system linear in control variables is considered. The control and the trajectory are subject to a system of isoperimetric constraints in the form of inequalities for integral functionals. We describe the boundary of the reachable set of the system at a given time and show that an admissible control taking the system to the boundary of the admissible set is a weakly efficient solution of a certain optimal control problem with a vector criterion if the linearized system is completely controllable. The components of the criterion are integral functionals that specify isoperimetric constraints. The stated result generalizes the authors' earlier results to the case of several consistent integral constraints. The proof is based on the Graves theorem on covering mappings and on the properties of the derivative of the “input-output” mapping and of the constraints. The result remains valid if the initial state of the system is not fixed but belongs to a given set. The problem is reduced to a control problem with a scalar criterion depending on parameters. The Chebyshev convolution of integral functionals is chosen as the scalar criterion. Necessary conditions are obtained for the optimality of controls taking the system to the boundary of the reachable set in the form of Pontryagin's maximum principle.
Keywords: control system, isoperimetric constraints, reachable set, maximum principle.
Funding agency Grant number
Ural Branch of the Russian Academy of Sciences 18-1-1-9
Received: 31.10.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 304, Issue 1, Pages S76–S87
DOI: https://doi.org/10.1134/S0081543819020093
Bibliographic databases:
Document Type: Article
UDC: 517.977.1
MSC: 93B03
Language: Russian
Citation: M. I. Gusev, I. V. Zykov, “On the geometry of reachable sets for control systems with isoperimetric constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 63–75; Proc. Steklov Inst. Math. (Suppl.), 304, suppl. 1 (2019), S76–S87
Citation in format AMSBIB
\Bibitem{GusZyk18}
\by M.~I.~Gusev, I.~V.~Zykov
\paper On the geometry of reachable sets for control systems with isoperimetric constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 63--75
\mathnet{http://mi.mathnet.ru/timm1497}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-63-75}
\elib{https://elibrary.ru/item.asp?id=32604045}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 304
\issue , suppl. 1
\pages S76--S87
\crossref{https://doi.org/10.1134/S0081543819020093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000436169800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067027626}
Linking options:
  • https://www.mathnet.ru/eng/timm1497
  • https://www.mathnet.ru/eng/timm/v24/i1/p63
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :110
    References:51
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024