Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 1, Pages 27–39
DOI: https://doi.org/10.21538/0134-4889-2018-24-1-27-39
(Mi timm1494)
 

This article is cited in 2 scientific papers (total in 2 papers)

Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon

A. L. Bagnoa, A. M. Tarasyevba

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (220 kB) Citations (2)
References:
Abstract: An infinite horizon optimal control problem is considered in which the quality functional contains an index with discount factor under the integral sign. The main feature of the problem is the unbounded index, which allows to analyze economic growth models with linear, power, and logarithmic utility functions. A discrete approximation of the Hamilton-Jacobi equation is explored for constructing the value function of the original problem. The Holder condition and the sublinear growth condition are derived for the solution of the discrete approximation equation. Uniform convergence of solutions of approximation equations to the value function of the optimal control problem is shown. The obtained results can be used to construct grid approximation methods for the value function of an optimal control problem on an infinite time interval. The proposed methods are effective tools in the modeling of economic growth processes.
Keywords: discrete approximation, optimal control, Hamilton-Jacobi equation, viscosity solution, infinite horizon, value function.
Received: 01.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49K15, 49L25
Language: Russian
Citation: A. L. Bagno, A. M. Tarasyev, “Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 1, 2018, 27–39
Citation in format AMSBIB
\Bibitem{BagTar18}
\by A.~L.~Bagno, A.~M.~Tarasyev
\paper Discrete approximation of the Hamilton-Jacobi equation for the value function in an optimal control problem with infinite horizon
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 1
\pages 27--39
\mathnet{http://mi.mathnet.ru/timm1494}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-1-27-39}
\elib{https://elibrary.ru/item.asp?id=32604042}
Linking options:
  • https://www.mathnet.ru/eng/timm1494
  • https://www.mathnet.ru/eng/timm/v24/i1/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :57
    References:41
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024