Abstract:
Possible orders and fixed-point subgraphs are found for elements of prime order in the automorphism group of generalized hexagons $GH(t,t)$. It is proved that the generalized hexagon of order $(6,6)$ is not edge-symmetric.
Citation:
I. N. Belousov, “On automorphisms of a generalized hexagon of order $(t,t)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 44–54; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 42–53
\Bibitem{Bel14}
\by I.~N.~Belousov
\paper On automorphisms of a~generalized hexagon of order~$(t,t)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 44--54
\mathnet{http://mi.mathnet.ru/timm1057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=360315}
\elib{https://elibrary.ru/item.asp?id=21585623}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 42--53
\crossref{https://doi.org/10.1134/S0081543815050041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932612353}
Linking options:
https://www.mathnet.ru/eng/timm1057
https://www.mathnet.ru/eng/timm/v20/i2/p44
This publication is cited in the following 1 articles:
V. I. Berdyshev, “A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set”, Proc. Steklov Inst. Math. (Suppl.), 296:1 (2017), 95–101