Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 4, Pages 794–804 (Mi smj2364)  

The fractal “Frog”

A. Gospodarczyk

Institute of Mathematics, University of Gdańsk, Gdańsk, Poland
References:
Abstract: In [1–3] some analytical properties were investigated of the Von Koch curve $\Gamma_\theta$, $\theta\in(0,\frac\pi4)$. In particular, it was shown that $\Gamma_\theta$ is quasiconformal and not AC-removable. The natural question arises: Can one find a quasiconformal and not AC-removable curve essentially different from $\Gamma_\theta$ in the sense that it is not diffeomorphic to $\Gamma_\theta$? The present paper is an answer to the question. Namely, we construct a quasiconformal curve, calling the “Frog”, which is not AC-removable and not diffeomorphic to $\Gamma_\theta$ for any $\theta\in(0,\frac\pi4)$.
Keywords: Sierpiński gasket, Frog, quasiconformal curve, fractals, iterated function system, $BL^\beta$-spaces, Hausdorff dimension, AC-removability, Von Koch curve, diffeomorphism.
Received: 03.09.2011
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 4, Pages 635–644
DOI: https://doi.org/10.1134/S0037446612040064
Bibliographic databases:
Document Type: Article
UDC: 517.518.1+517.518.17
Language: Russian
Citation: A. Gospodarczyk, “The fractal “Frog””, Sibirsk. Mat. Zh., 53:4 (2012), 794–804; Siberian Math. J., 53:4 (2012), 635–644
Citation in format AMSBIB
\Bibitem{Gos12}
\by A.~Gospodarczyk
\paper The fractal ``Frog''
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 4
\pages 794--804
\mathnet{http://mi.mathnet.ru/smj2364}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013527}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 4
\pages 635--644
\crossref{https://doi.org/10.1134/S0037446612040064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307983400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865448351}
Linking options:
  • https://www.mathnet.ru/eng/smj2364
  • https://www.mathnet.ru/eng/smj/v53/i4/p794
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :100
    References:48
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024