Abstract:
The spectrum of a group is the set of its element orders. Let L=PSLn(q)L=PSLn(q), where nn is a prime greater than 33. We show that every finite group whose spectrum is the same as the spectrum of LL is isomorphic to an extension of LL by a subgroup of the outer automorphism group of LL.
Keywords:
simple linear group, prime graph, quasirecognizability by spectrum.
Citation:
M. A. Grechkoseeva, D. V. Lytkin, “Almost recognizability by spectrum of finite simple linear groups of prime dimension”, Sibirsk. Mat. Zh., 53:4 (2012), 805–818; Siberian Math. J., 53:4 (2012), 645–655
\Bibitem{GreLyt12}
\by M.~A.~Grechkoseeva, D.~V.~Lytkin
\paper Almost recognizability by spectrum of finite simple linear groups of prime dimension
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 4
\pages 805--818
\mathnet{http://mi.mathnet.ru/smj2365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013528}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 4
\pages 645--655
\crossref{https://doi.org/10.1134/S0037446612040076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307983400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865463433}
Linking options:
https://www.mathnet.ru/eng/smj2365
https://www.mathnet.ru/eng/smj/v53/i4/p805
This publication is cited in the following 8 articles:
Natalia V. Maslova, Viktor V. Panshin, Alexey M. Staroletov, “On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type”, European Journal of Mathematics, 9:3 (2023)
Maria A. Grechkoseeva, Victor D. Mazurov, Wujie Shi, Andrey V. Vasil'ev, Nanying Yang, “Finite Groups Isospectral to Simple Groups”, Commun. Math. Stat., 11:2 (2023), 169
M. A. Grechkoseeva, M. A. Zvezdina, “On recognition of $l_4(q)$ and $u_4(q)$ by spectrum”, Siberian Math. J., 61:6 (2020), 1039–1065
Yang N. Grechkoseeva M.A. Vasil'ev A.V., “on the Nilpotency of the Solvable Radical of a Finite Group Isospectral to a Simple Group”, J. Group Theory, 23:3 (2020), 447–470
A. M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. elektron. matem. izv., 14 (2017), 994–1010
Grechkoseeva M.A. Vasil'ev A.V., “on the Structure of Finite Groups Isospectral To Finite Simple Groups”, J. Group Theory, 18:5 (2015), 741–759
Vasil'ev A.V., “on Finite Groups Isospectral To Simple Classical Groups”, J. Algebra, 423 (2015), 318–374
M. A. Zvezdina, “On nonabelian simple groups having the same prime graph as an alternating group”, Siberian Math. J., 54:1 (2013), 47–55