Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2012, Volume 53, Number 4, Pages 781–793 (Mi smj2363)  

This article is cited in 10 scientific papers (total in 10 papers)

On complexity of three-dimensional hyperbolic manifolds with geodesic boundary

A. Yu. Vesninab, E. A. Fominykhcd

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Omsk State Technical University, Omsk
c Chelyabinsk State University, Chelyabinsk
d Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The nonintersecting classes $\mathscr H_{p,q}$ are defined, with $p,q\in\mathbb N$ and $p\ge q\ge1$, of orientable hyperbolic $3$-manifolds with geodesic boundary. If $M\in\mathscr H_{p,q}$, then the complexity $c(M)$ and the Euler characteristic $\chi(M)$ of $M$ are related by the formula $c(M)=p-\chi(M)$. The classes $\mathscr H_{q,q}$, $q\ge1$, and $\mathscr H_{2,1}$ are known to contain infinite series of manifolds for each of which the exact values of complexity were found. There is given an infinite series of manifolds from $\mathscr H_{3,1}$ and obtained exact values of complexity for these manifolds. The method of proof is based on calculating the $\varepsilon$-invariants of manifolds.
Keywords: complexity of manifolds, hyperbolic manifolds.
Received: 04.05.2012
English version:
Siberian Mathematical Journal, 2012, Volume 53, Issue 4, Pages 625–634
DOI: https://doi.org/10.1134/S0037446612040052
Bibliographic databases:
Document Type: Article
UDC: 515.162
Language: Russian
Citation: A. Yu. Vesnin, E. A. Fominykh, “On complexity of three-dimensional hyperbolic manifolds with geodesic boundary”, Sibirsk. Mat. Zh., 53:4 (2012), 781–793; Siberian Math. J., 53:4 (2012), 625–634
Citation in format AMSBIB
\Bibitem{VesFom12}
\by A.~Yu.~Vesnin, E.~A.~Fominykh
\paper On complexity of three-dimensional hyperbolic manifolds with geodesic boundary
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 4
\pages 781--793
\mathnet{http://mi.mathnet.ru/smj2363}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3013526}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 4
\pages 625--634
\crossref{https://doi.org/10.1134/S0037446612040052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000307983400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865462828}
Linking options:
  • https://www.mathnet.ru/eng/smj2363
  • https://www.mathnet.ru/eng/smj/v53/i4/p781
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :96
    References:50
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024