Loading [MathJax]/jax/output/CommonHTML/jax.js
Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 79, Issue 2, Pages 231–263
DOI: https://doi.org/10.1070/SM1994v079n02ABEH003498
(Mi sm997)
 

This article is cited in 30 scientific papers (total in 30 papers)

Rational closures of group rings of left-ordered groups

N. I. Dubrovin
References:
Abstract: Suppose K is a division ring, and G is a left-ordered group such that for any Dedekind cut ε of the linearly ordered set (G,) the group S={gGgε=ε} is such that KS is a right Ore domain and the group H={gGgP(G)g1=P(G)} is cofinal in G. Then the group ring KG can be embedded in a division ring having a valuation in the sense of Mathiak with values in G. If G is the group of a trifolium, this construction leads to an example of a chain domain with a prime, but not completely prime, ideal.
Received: 21.04.1992
Bibliographic databases:
UDC: 512
MSC: Primary 16S34; Secondary 20F60, 06F15
Language: English
Original paper language: Russian
Citation: N. I. Dubrovin, “Rational closures of group rings of left-ordered groups”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 231–263
Citation in format AMSBIB
\Bibitem{Dub93}
\by N.~I.~Dubrovin
\paper Rational closures of group rings of left-ordered groups
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 2
\pages 231--263
\mathnet{http://mi.mathnet.ru/eng/sm997}
\crossref{https://doi.org/10.1070/SM1994v079n02ABEH003498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1235288}
\zmath{https://zbmath.org/?q=an:0828.16028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PY27400001}
Linking options:
  • https://www.mathnet.ru/eng/sm997
  • https://doi.org/10.1070/SM1994v079n02ABEH003498
  • https://www.mathnet.ru/eng/sm/v184/i7/p3
  • This publication is cited in the following 30 articles:
    1. A. A. Tuganbaev, “Tsentralno suschestvennye koltsa i polukoltsa”, Algebra, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 219, VINITI RAN, M., 2023, 60–130  mathnet  crossref
    2. Askar Tuganbaev, “Centrally Essential Rings and Semirings”, Mathematics, 10:11 (2022), 1867  crossref
    3. Askar Tuganbaev, “On Rings of Weak Global Dimension at Most One”, Mathematics, 9:21 (2021), 2643  crossref
    4. Graeter J., “Free Division Rings of Fractions of Crossed Products of Groups With Conradian Left-Orders”, Forum Math., 32:3 (2020), 739–772  crossref  isi
    5. Kamal Paykan, “Goldie ranks of skew generalized power series rings”, Communications in Algebra, 48:8 (2020), 3222  crossref
    6. Ito T., “Isolated Orderings on Amalgamated Free Products”, Group. Geom. Dyn., 11:1 (2017), 121–138  crossref  mathscinet  zmath  isi  scopus
    7. Pavel Příhoda, Gena Puninski, “Pure projective modules over chain domains with Krull dimension”, Journal of Algebra, 459 (2016), 189  crossref
    8. Graeter J., Sperner R.P., “On Embedding Left-Ordered Groups Into Division Rings”, Forum Math., 27:1 (2015), 485–518  crossref  mathscinet  zmath  isi
    9. Facchini A. Parolin C., “Rings Whose Proper Factors Are Right Perfect”, Colloq. Math., 122:2 (2011), 191–202  crossref  mathscinet  zmath  isi  elib
    10. Chebotar M. Lee P.-H. Puczylowski E.R., “On Commutators and Nilpotent Elements in Simple Rings”, Bull. London Math. Soc., 42:Part 2 (2010), 191–194  crossref  mathscinet  zmath  isi
    11. Brungs H.H., Marubayashi H., Osmanagic E., “Gauss Extensions and Total Graded Subrings for Crossed Product Algebras”, J. Algebra, 316:1 (2007), 189–205  crossref  mathscinet  zmath  isi  elib
    12. France-Jackson H., Mazurek R., Puczylowski E.R., “On Extensions of Chain Algebras and Atoms of the Lattice of Radicals”, Commun. Algebr., 35:9 (2007), 2707–2718  crossref  mathscinet  zmath  isi
    13. N. I. Dubrovin, “Rational operators of the space of formal series”, J. Math. Sci., 149:3 (2008), 1191–1223  mathnet  crossref  mathscinet  zmath  elib  elib
    14. Mazurek R., Torner G., “On Semiprime Segments of Rings”, J. Aust. Math. Soc., 80:Part 2 (2006), 263–272  crossref  mathscinet  zmath  isi
    15. Mazurek R., Torner G., “Comparizer Ideals of Rings”, Commun. Algebr., 32:12 (2004), 4653–4665  crossref  mathscinet  zmath  isi
    16. Brungs, HH, “A classification and examples of rank one chain domains”, Transactions of the American Mathematical Society, 355:7 (2003), 2733  crossref  mathscinet  zmath  isi  elib
    17. Dubrovin N., Grater J., Hanke T., “Complexity of Elements in Rings”, Algebr. Represent. Theory, 6:1 (2003), 33–45  crossref  mathscinet  zmath  isi
    18. Brungs H., Grater J., “Characterizing Nearly Simple Chain Domains”, Proc. Amer. Math. Soc., 131:5 (2003), 1347–1355  crossref  mathscinet  zmath  isi
    19. Brungs H., Torner G., “On the Number of Injective Indecomposable Modules”, J. Algebra, 235:1 (2001), 113–130  crossref  mathscinet  zmath  isi
    20. A Facchini, Ring Theory And Algebraic Geometry, 2001  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:377
    Russian version PDF:132
    English version PDF:35
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025