Abstract:
Suppose K is a division ring, and G is a left-ordered group such that for any Dedekind cut ε of the linearly ordered set (G,⩽) the group S={g∈G∣gε=ε} is such that KS is a right Ore domain and the group
H={g∈G∣gP(G)g−1=P(G)} is cofinal in G. Then the group ring KG can be embedded in a division ring having a valuation in the sense of Mathiak with values in G. If G is the group of a trifolium, this construction leads to an example of a chain domain with a prime, but not completely prime, ideal.
\Bibitem{Dub93}
\by N.~I.~Dubrovin
\paper Rational closures of group rings of left-ordered groups
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 2
\pages 231--263
\mathnet{http://mi.mathnet.ru/eng/sm997}
\crossref{https://doi.org/10.1070/SM1994v079n02ABEH003498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1235288}
\zmath{https://zbmath.org/?q=an:0828.16028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PY27400001}
Linking options:
https://www.mathnet.ru/eng/sm997
https://doi.org/10.1070/SM1994v079n02ABEH003498
https://www.mathnet.ru/eng/sm/v184/i7/p3
This publication is cited in the following 30 articles:
A. A. Tuganbaev, “Tsentralno suschestvennye koltsa i polukoltsa”, Algebra, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 219, VINITI RAN, M., 2023, 60–130
Askar Tuganbaev, “On Rings of Weak Global Dimension at Most One”, Mathematics, 9:21 (2021), 2643
Graeter J., “Free Division Rings of Fractions of Crossed Products of Groups With Conradian Left-Orders”, Forum Math., 32:3 (2020), 739–772
Kamal Paykan, “Goldie ranks of skew generalized power series rings”, Communications in Algebra, 48:8 (2020), 3222
Ito T., “Isolated Orderings on Amalgamated Free Products”, Group. Geom. Dyn., 11:1 (2017), 121–138
Pavel Příhoda, Gena Puninski, “Pure projective modules over chain domains with Krull dimension”, Journal of Algebra, 459 (2016), 189
Graeter J., Sperner R.P., “On Embedding Left-Ordered Groups Into Division Rings”, Forum Math., 27:1 (2015), 485–518
Facchini A. Parolin C., “Rings Whose Proper Factors Are Right Perfect”, Colloq. Math., 122:2 (2011), 191–202
Chebotar M. Lee P.-H. Puczylowski E.R., “On Commutators and Nilpotent Elements in Simple Rings”, Bull. London Math. Soc., 42:Part 2 (2010), 191–194
Brungs H.H., Marubayashi H., Osmanagic E., “Gauss Extensions and Total Graded Subrings for Crossed Product Algebras”, J. Algebra, 316:1 (2007), 189–205
France-Jackson H., Mazurek R., Puczylowski E.R., “On Extensions of Chain Algebras and Atoms of the Lattice of Radicals”, Commun. Algebr., 35:9 (2007), 2707–2718
N. I. Dubrovin, “Rational operators of the space of formal series”, J. Math. Sci., 149:3 (2008), 1191–1223
Mazurek R., Torner G., “On Semiprime Segments of Rings”, J. Aust. Math. Soc., 80:Part 2 (2006), 263–272
Mazurek R., Torner G., “Comparizer Ideals of Rings”, Commun. Algebr., 32:12 (2004), 4653–4665
Brungs, HH, “A classification and examples of rank one chain domains”, Transactions of the American Mathematical Society, 355:7 (2003), 2733
Dubrovin N., Grater J., Hanke T., “Complexity of Elements in Rings”, Algebr. Represent. Theory, 6:1 (2003), 33–45