Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 79, Issue 2, Pages 265–279
DOI: https://doi.org/10.1070/SM1994v079n02ABEH003499
(Mi sm998)
 

This article is cited in 19 scientific papers (total in 19 papers)

Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions

V. E. Maiorov
References:
Abstract: Kolmogorov's $(n,\delta)$-widths of the Sobolev spaces $W_2^r$, equipped with a Gaussian probability measure $\mu$, are studied in the metric of $L_q$:
$$ d_{n,\delta}(W_2^r,\mu,L_q)=\inf_{G\subset W_2^r}d_n(W_2^r\setminus G,L_q), $$
where $d_n(K, L_q)$ is Kolmogorov's $n$-width of the set $K$ in the space $L_q$, and the infimum is taken over all possible subsets $G\subset W_2^r$ with measure $\mu(G)\le\delta$, $0\le\delta\le1$. The asymptotic equality
$$ d_{n,\delta}(W_2^r,\mu,L_q)\asymp n^{-r-\varepsilon}\sqrt{1+\frac1n\ln\frac1\delta} $$
with respect to $n$ and $\delta$ is obtained, where $1\le q\le\infty$ and $\varepsilon>0$ is an arbitrary number depending only on the measure $\mu$.
Received: 16.04.1992
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A46, 46E35; Secondary 28C20
Language: English
Original paper language: Russian
Citation: V. E. Maiorov, “Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions”, Russian Acad. Sci. Sb. Math., 79:2 (1994), 265–279
Citation in format AMSBIB
\Bibitem{Mai93}
\by V.~E.~Maiorov
\paper Kolmogorov's $(n,\delta)$-widths of spaces of smooth functions
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 2
\pages 265--279
\mathnet{http://mi.mathnet.ru//eng/sm998}
\crossref{https://doi.org/10.1070/SM1994v079n02ABEH003499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1235289}
\zmath{https://zbmath.org/?q=an:0828.41011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PY27400002}
Linking options:
  • https://www.mathnet.ru/eng/sm998
  • https://doi.org/10.1070/SM1994v079n02ABEH003499
  • https://www.mathnet.ru/eng/sm/v184/i7/p49
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:622
    Russian version PDF:126
    English version PDF:27
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024