Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 2, Pages 333–355
DOI: https://doi.org/10.1070/SM1994v078n02ABEH003472
(Mi sm972)
 

Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity

G. V. Grishina

N. E. Bauman Moscow State Technical University
References:
Abstract: A study is made of the functions realizing a minimum for the functional
$$ \int_\Omega F(x,u,Du,\dots,D^mu)\,dx, $$
where $F$ has power order of growth with respect to $D^mu$. The rate of decrease is established for the $m$th-order derivatives of an extremal in the integral metric in a neighborhood of a singularity on the boundary of power cusp type and at infinity in domains having outside some ball the structure of a cylinder or layer, and also domains constricting or expanding at infinity in a power manner. Estimates are obtained under the assumption that homogeneous Dirichlet conditions or Neumann conditions are given on the indicated part of the boundary. The estimates depend on the geometry of the domain. The results obtained are new also for a broad class of nonlinear elliptic equations.
Received: 11.10.1991
Bibliographic databases:
UDC: 517.9
MSC: Primary 49K30, 49Q20; Secondary 49S05, 35J65
Language: English
Original paper language: Russian
Citation: G. V. Grishina, “Behavior of solutions of a nonlinear variational problem in a neighborhood of singular points of the boundary and at infinity”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 333–355
Citation in format AMSBIB
\Bibitem{Gri93}
\by G.~V.~Grishina
\paper Behavior of solutions of a~nonlinear variational problem in a~neighborhood of singular points of the~boundary and at infinity
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 333--355
\mathnet{http://mi.mathnet.ru//eng/sm972}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003472}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220619}
\zmath{https://zbmath.org/?q=an:0810.49030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700004}
Linking options:
  • https://www.mathnet.ru/eng/sm972
  • https://doi.org/10.1070/SM1994v078n02ABEH003472
  • https://www.mathnet.ru/eng/sm/v184/i3/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025