Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 78, Issue 2, Pages 313–332
DOI: https://doi.org/10.1070/SM1994v078n02ABEH003471
(Mi sm971)
 

Integral operators of potential type and their boundary properties

R. K. Seifullaev

Baku State University
References:
Abstract: The properties of integral operators of the form
$$ (Au)(x)= \int_{\partial D}K(x,x-y)u(y)\,dy, \quad x\in D, $$
$D$ a domain in $\mathbb{R}^{m+1}$, $m\ge1$, and of singular integral operators of the form
$$ (Bu)(x_0)=\int_{\partial D}K(x_0,x_0-y)u(y)\,dy, \quad x_0\in D, $$
are studied in the particular case when $\partial D$ lies in the hyperplane $\mathbb{R}^m\times\{0\}$. General methods are used to obtain estimates of the modulus of continuity of the operator in terms of the continuity of the density, partical moduli of continuity of the characteristic $f(x,\theta)=|x-y|^mK(x,x-y)$, $\theta=(y-x)|y-x|^{-1}$, and also characteristics describing the smoothness of $\partial D$ or its edge (it is assumed that the kernel $~K(x,w)$ is homogeneous of degree $(-m)$ with respect to $w$).
Received: 20.12.1991
Bibliographic databases:
UDC: 517.518.13/14
MSC: 31B25, 45H05, 45P05
Language: English
Original paper language: Russian
Citation: R. K. Seifullaev, “Integral operators of potential type and their boundary properties”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 313–332
Citation in format AMSBIB
\Bibitem{Sei93}
\by R.~K.~Seifullaev
\paper Integral operators of potential type and their boundary properties
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 78
\issue 2
\pages 313--332
\mathnet{http://mi.mathnet.ru//eng/sm971}
\crossref{https://doi.org/10.1070/SM1994v078n02ABEH003471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220618}
\zmath{https://zbmath.org/?q=an:0817.31004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PD76700003}
Linking options:
  • https://www.mathnet.ru/eng/sm971
  • https://doi.org/10.1070/SM1994v078n02ABEH003471
  • https://www.mathnet.ru/eng/sm/v184/i3/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025