Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1995, Volume 83, Issue 2, Pages 445–468
DOI: https://doi.org/10.1070/SM1995v083n02ABEH003600
(Mi sm945)
 

This article is cited in 3 scientific papers (total in 3 papers)

Manifolds modeled by an equivariant Hilbert cube

S. M. Ageev
References:
Abstract: J. E. West posed the general problem of carrying over the basics of the theory of manifolds modeled by the Hilbert cube ($\equiv Q$-manifolds) into the equivariant realm. In particular, under the number 942 in 'Open problems in topology' he formulated the following problem: 'If $K$ is a locally compact $G$-CW complex, is the diagonal $G$-action on $X=K\times Q_G$$Q_G$-manifold? [$G$ is a compact Lie group and $Q_G=\prod_{i>0,\rho}D_{\rho,i}$ is the product of the unit balls of all the irreducible real representations of $G$, each representation disc being represented infinitely often.] What if $K$ is a locally compact $G$-ANR?' In this paper we construct a theory of $\mathbb Q$-manifolds for an arbitrary compact group $G$ in a scope that suffices for proving a characterization theorem for such manifolds.
Received: 25.02.1993
Bibliographic databases:
UDC: 515.12
MSC: Primary 57N20, 57C55; Secondary 22C05
Language: English
Original paper language: Russian
Citation: S. M. Ageev, “Manifolds modeled by an equivariant Hilbert cube”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 445–468
Citation in format AMSBIB
\Bibitem{Age94}
\by S.~M.~Ageev
\paper Manifolds modeled by an~equivariant Hilbert cube
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 83
\issue 2
\pages 445--468
\mathnet{http://mi.mathnet.ru//eng/sm945}
\crossref{https://doi.org/10.1070/SM1995v083n02ABEH003600}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317297}
\zmath{https://zbmath.org/?q=an:0841.22003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ10300010}
Linking options:
  • https://www.mathnet.ru/eng/sm945
  • https://doi.org/10.1070/SM1995v083n02ABEH003600
  • https://www.mathnet.ru/eng/sm/v185/i12/p19
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024